
Høsten 2016

FYS100 Fysikk
Re-Exam
Solutions

Exam number must be written on every sheet.

The problem set is composed of 5 problems, that all need to be solved for a
full score.
The standard formula sheet for FYS100 Fysikk is part of this problem set.
The problems are also attached in Norwegian.

Hints:
- Don’t panic! - Read all the problems through first. - Do the easy parts first.
- Include units on your answers. - 3 significant figures in the results. - Don’t
plug in numbers until the end. - Don’t panic!!

You must draw sketches illustrating the problems
and their solution!

******************************************

Below, you will find solutions, as well as some of the most common mistakes.

******************************************
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Problem 1: Get off the lake! (Hand-in problem) (20 points)

M M m m 

d 

Two men, each of mass M = 75.0 kg, find themselves standing on an icy
lake, a distance d = 5.00 m apart. They each happen to carry a basketball,
weighing m = 0.600 kg. In order to move, they get the clever idea of throwing
the balls to each other. They throw with the same speed v = 10.0 m/s, at the
same angle with horizontal, θ, and at the same time. We also assume that
they somehow manage for the balls to not hit each other in mid-air, and that
they throw and catch the balls at the same height above the ground. There is
gravity, g = 9.80 m/s2.

a) With what angle θ should they throw, in order to hit the other guy? Is
there more than one solution?

Solution : As soon as they throw, they start moving. If it takes the ball ∆t
to make the journey, it will have to cover a distance d + vgx∆t, where vgx is
the speed of the receiving guy, after he has thrown his own ball. So we have

vbx∆t = d+ vgx∆t, ∆t =
d

v cos θ − vgx
. (1)

where vbx = v cos θ is the x-component of the ball velocity. Momentum con-
servation in the x-direction of guy + ball tells us that

v cos θm = Mvgx → vgx =
m

M
v cos θ. (2)

We also need the range equation, so that

v2

g
sin 2θ = vbx∆t. (3)

Solving the whole system of equations, we find

θ =
1

2
sin−1 gd

v2(1−m/M)
= 14.8◦ or 75.2◦. (4)
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Which makes sense, since in the limit m = 0, the guys don’t move and the
distance is just d. And when m = M , the guy is moving as fast as the ball,
and it will never catch up.

b) How far are the two guys apart, when they receive the balls?

Solution : Either way, they are at a distance

d+ 2vgx∆t = 2
v2

g
sin 2θ − d = 5.08 m. (5)

c) What is their speeds after they receive the balls?

Solution : Momentum conservation tells us that mvbx +Mvgx = (m+M)vf ,
so that

vf =
mvbx +Mvgx
m+M

=
2m

m+M
vbx =

2m

m+M
v cos θ = 0.153 or 0.0405 m/s. (6)

For each question, provide an algebraic expression, a sketch and a numerical
result.

Typical mistakes: This was a known hand-in problem, and the majority
of you did it right, or at least remembered what you were supposed to do.
Mistakes were typically putting in the numbers wrong, forgetting one of the
solutions to the angle in b) and/or the final speed in c). Some of you did very
little, and for those, it was mostly not realising that momentum conservation
had to be taken into account. In total, 64% of available points were given.

Problem 2: Bike-boy (20 points)

R r 
d 

M 

A 
mw 
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A boy of mass M is on his bike going along a horizontal road, and puts all
his weight on the pedal to force the wheel round. The pedal is attached by a
rod of length d to the center of a cog wheel of radius R. Which is in turn
connected by a chain to a smaller cog wheel of radius r, which is attached to
the back wheel (as on a standard bike). All rods, chains and cog wheels can be
taken to be massless. There is no kinetic friction, and everything is turning
without sliding. There is gravity g.

a) If the boy stands on the pedal when it is at ”9 o’clock” (see figure), what
is the torque provided to the back wheel? The bike starts from rest.

Solution: The torque of the pedal on the first cog wheel is τ = Mgd. That
becomes a force along the chain of F = τ/R = Mgd/R. This force is trans-
ported by the chain to give the torque Mgrd/R around the back wheel.

Rest of 
bike + boy 

M + mb A A mw mw 

τ 

The bike itself is taken to have mass mb plus the mass of its two wheels, each
providing mw, plus M for the boy. The wheels have radius A and the moment
of inertia of a ring I = mwA

2.

b) Assuming that the back wheel and front wheel roll without sliding on the
ground, what is the acceleration of the bike + boy? Hint: Consider the back
wheel, front wheel and middle part (bike+boy) as sub-systems.

Solution: Now we have to write down the torque and force equations for each
system. The force between back-wheel and middle part is f3; between front
wheel and middle part f4. The friction forces on the front and back wheels
are f2 and f1, respectively (one acting forwards, the other backwards!). With
a sensible choice of positive directions of rotation, and using Newton 3., we
get the set of 5 equations, with in addition the no-slipping condition a = Aα
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(both wheels have same radius):

(M +mb)a = f3 − f4, (7)
mwa = f1 − f3, (8)
mwa = f4 − f2, (9)
Iα = τ − f1A, (10)

Iα = f2A. (11)

Adding all these up on the left- and right-hand sides, all the forces f1−4 cancel
out, and we get

a =
τ

A

(
1

M +mb + 4mw

)
= Mg

dr

RA

(
1

M +mb + 4mw

)
. (12)

c) Assuming he started at rest, how fast is he going by the time he gets the
pedal to position ”6 o’clock”? Ignore all sources of kinetic friction.

Solution: We use energy conservation. The boy releases gravitational poten-
tial energy, which is transformed into kinetic energy of the bicycle. We write
(remembering both translational and rotational kinetic energy contributions)

Mgd =
1

2
(M +mb + 2mw)v2 + 2

1

2
Iω2 =

1

2
(M +mb + 4mw) v2 (13)

→ v =

√
2Mgd

M +mb + 4mw

. (14)

For each question, provide an algebraic expression and a sketch.

Typical mistakes: This apparently was challenging, although we have done
rolling of wheels with and without torques from engines at lecture. Only
a handful understood how to transport the torque that the boy gives to
the cog-wheel, via the chain to the back wheel. For b) many of you tried
invoking forces and torques, but most forgot the static friction with the road,
responsible for the overall acceleration and torques on the two wheels. In
c), some realised that energy conservation was in play, but almost no-one
included the rolling energy and translational energy of all the components.
In total, 17 % of available points were given for this problem.
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Problem 3: Bead it! (20 points)

M 

k 

R 

Note: Similar, but not the same as hand-in problem.
A bead of mass m is sliding on a ring of radius R, the ring standing on its
side. A spring is attached to the top of the ring at one end, and to the bead
at the other end. The spring has spring constant k and we will assume that
the equilibrium point of the spring is when it is unstretched. There is gravity,
g.

a) If the bead starts from rest (almost) exactly at the bottom (at 6 o’clock),
what is its speed when it reaches the top (at 12 o’clock)?

Solution: Spring potential energy is converted into gravitational potential
energy and kinetic energy. We write

1

2
Mv2 =

1

2
k(2R)2 −Mg(2R)→ v = 2

√
k

M
R2 − gR (15)

b) Find a requirement on k, M , g and R for the bead getting to the top at
all.

Solution: Obviously, this only works if the inside of the sqrt is positive, so

k

M
R2 − gR > 0→ kR

Mg
> 1. (16)

c) Find the potential energy function E(θ), as a function of the angle along
the ring, including both gravitational and spring potential energy. We take
θ = 0 when the bead is at the bottom of the ring. Find the stable equilibrium
point, depending on whether the criterion in b) is fulfilled or not.

Solution: Now we need to find the height as a function of θ (for the gravi-
tational potential) and the distance from the top as a function of θ (for the
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spring length). We have

E(θ) = Mgh(θ) +
1

2
kd(θ)2 = MgR(1− cos θ) +

1

2
kR2(2 + 2 cos θ) (17)

= MgR

[(
kR

Mg
+ 1

)
+

(
kR

Mg
− 1

)
cos θ

]
. (18)

This has extrema at θ = 0 and θ = π. If kR/Mg > 1, the potential has a
minimum at the top of the ring; if kR/Mg < 1, potential has a minimum at
the bottom of the ring.

For each question, provide an algebraic expression and a sketch.

Typical mistakes: Getting the sign of one of the energy terms wrong, so
that there is a sum inside the sqrt, rather than a difference. That of course
made b) quite hard to get right. A bunch of factors of two in the two terms
also got lost here and there. Some got the equality sign the wrong way around
in b). In c) nobody got the exact energy function right, but quite a few got
some of the way. In total, 40% of the available points were given.

Problem 4: Draw a Bridge! (30 points)

l 

M, L 

Φ 

θ 

h 

A drawbridge is composed of a wooden plank attached to the wall on a pivot
at one end, and with a rope at the other end (see figure). The rope goes up at
an angle of φ with horizontal, and is attached to a horizontal wooden beam,
a height h = 3.00 m above the pivot. The bridge in turn makes an angle of θ
with horizontal, as it is pulled up. The plank is L = 5.00 m long, is uniform
and weighs M = 200 kg. The rope is taken to be massless. The wooden beam
is l = 4.00 m long. There is gravity g = 9.80 m/s2.
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a) First consider the case, where the bridge is horizontal (θ = 0). Make a
sketch of all the relevant forces acting on the bridge. Find an expression for
φ in terms of the other quantities.

Solution: There is gravity Mg in the middle of the bridge, there is a pivot
force at the left-hand end F = (Fx, Fy) and a string tension T along the rope.
The relation for φ follows from trigonometry

tanφ =
h

L− l
= 3. (19)

b) Given that the bridge is in static equilibrium, find the magnitude of the
rope tension T and of the pivot force F .

Solution: Write down force equations along x and y,

Fx = T cosφ, (20)
Fy + T sinφ = Mg, (21)

and a torque equation, most conveniently around the pivot

Mg
L

2
= TL sinφ. (22)

Solving for Fx, Fy and T , we find

|T | = Mg
1

2 sinφ
= 1033 N, (23)

|F | =
√
F 2
x + F 2

y =
Mg

2

√
1 +

1

tan2 φ
= Mg

1

2 sinφ
= 1033 N. (24)

The bridge can now be pulled up, to a maximum angle θmax where the end
touches the wooden beam above it.

c) Solve for the magnitude of the tension and the pivot force, for a general θ
and φ.

Solution: Keeping in mind how the angles are defined, we have the same
force equations

Fx = T cosφ, (25)
Fy + T sinφ = Mg, (26)

but the torque equation is a little different

Mg
L

2
cos θ = TL sin(θ + φ). (27)
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Solving for Fx, Fy and T , we find

|T | = Mg
cos θ

2 sin(θ + φ)
, (28)

|F | = Mg

√(
cos θ cosφ

2 sin(θ + φ)

)2

+

(
1− cos θ sinφ

2 sin(θ + φ)

)2

. (29)

d) Find a relation between θ and φ as the bridge is raised.

Solution: From geometry, one finds

tanφ =
h− l sin θ
L cos θ − l

. (30)

e) By inserting some numbers, make a sketch of the rope tension T (θ) and
find its maximum value on the interval θ ∈ [0, θmax].

Solution: One quickly realises that T decreases with increasing θ, and so
the maximum magnitude is the one we found in b), 1033 N.

For each question, provide an algebraic expression, a sketch, and a number.

Typical mistakes: Forgetting the pivot force. Thinking that it only goes in
the x or only in the y-direction. Thinking that the beam above is somehow
involved in the dynamics. Not writing down the torque equations. Few got
to the right number, but some got to a number, using additional (incorrect)
assumptions. 18% of the available points were given.

Problem 5: Discs. In. Space! (10 points)

M, R 
m, r 
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A spaceship is travelling with engines off far away from everything. Inside, a
CD-player suddenly goes on, spinning the CD with 4 revolutions per second.
The spaceship (not including the CD) can be thought of as a hollow cylinder
(I = MR2) of radius R = 1.00 m and mass 1000 kg. The CD is a uniform
disc (I = mr2/2) of mass m = 15.0 g and radius r = 6.00 cm. The axis of
the spinning CD coincides with the symmetry-axis of the cylinder, and it is
spinning according to the right-hand-rule around this axis.

a) In what direction and with what angular speed does the spaceship start
rotating? The spaceship is assumed to not spin initially. Hint: Yes, it is very
small.

Solution : Angular momentum is conserved and so LCD + LShip = 0. We
write:

ICDωCD = −IShipωShip → ωShip = −mr
2/2

MR2
ωCD =

0.015× 0.062

2× 1000× 12
8π = 6.79× 10−7 s−1.(31)

Provide an algebraic expression, a sketch, and a number.

Typical mistakes: Putting in numbers wrong. Using energy conservation
instead of angular momentum conservation. Thinking that the space-ship
starts turning in the same direction as the CD. In total, 43% of the points
available were given.
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