
Høsten 2017

FYS100 Fysikk
Eksamen/Exam

Solutions

Problem 1: Plok-plump!
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A hammer of mass M1 = 2.00 kg on a massless stick of length L1 = 30.0
cm is nailed to a wall, so that it is free to turn around the axis (se Figure).
Starting at rest from the horizontal position, it swings down and hits a ball
of mass m = 0.100 kg in an elastic collision. The ball is initially at rest,
and when hit proceeds to slide frictionlessly along the table until it reaches a
second hammer of mass M2 = 1.50 kg on a massless stick of length L2 = 20.0
cm. In this collision, the ball attaches itself to the hammer, and the hammer
and ball swing up to a height h. There is gravity g = 9.80 m/s2.

a) What is the speed of the ball as it slides along the table?

Solution: There is energy conservation as the hammer swings down, so that
its speed at the bottom is
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M1v

2
1 =M1gL1 → v1 =

√
2gL1. (1)

Then it performs an elastic collision with the ball, with the ball initially at
rest, so

mvb +M1vh =M1v1, (2)
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1. (3)
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Solving this gives

vb =
2v1

1 + m
M1

=

√
8gL1

1 + m
M1

= 4.62 m/s. (4)

b) What is the height h?

Solution: The second collision is completely inelastic, so that

(M2 +m)v2 = mvb → vv =
m

M2 +m
vb. (5)

(Mechanical) Energy is not conserved in an inelastic collision.
Then energy conservation applies as the hammer swings up

(M2 +m)gh =
1

2
(M2 +m)v22 → h =

1

2g
v22 = 4L1

m2

(M2 +m)2
M2

1

(M1 +m)2
, (6)

which for the numbers given is 4.25 mm.

c) How much of the initial energy in the hammer M1 ends up in the ham-
mer/ball (M2 +m) system at the end (as mechanical energy)?

Solution : Simply compute the ratio of potential energies at the beginning
and at the end:

(M2 +m)gh

M1gL1

=
4m2M1

(M1 +m)2(M2 +m)
= 0.0113 (7)

Typical mistakes: Using energy conservation only for a), not momentum
conservation. Using energy conservation for the inelastic collision in b), inste-
ad of momentum conservation. Thinking that the first hammer stops when
hitting the ball (it does not). Calculating wrong. Inserting numbers wrong.

Problem 2: Bead-on-a-stick
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A bead on a horizontal stick is connected to a nail by a spring. The bead has
mass m, the spring has spring constant k and the vertical distance from the
stick to the nail is d. We take the unstretched equilibrium length of the spring
to be very small, relative to d. We define an x-axis along the stick, with x = 0
directly below the nail. There is gravity, g.

a) Draw a force diagram of the system. Find, as a function of x, the force on
the bead from the spring 1) in the direction along the spring and 2) in the
direction along the stick.

Solution: The string force is given by how much it is stretched according to
Stoke’s Law. From Pythagoras, and using the information that the equilibri-
um length is "very small"' 0, we have 1)

Fs = −kL = −k
√
d2 + x2. (8)

Along the stick, we just have to project the spring force on the direction of
the stick, to find

F = Fs
x

L
= −kLx

L
= −kx. (9)

b) Is the motion of the bead along the stick like that of a harmonic oscillator,
and if so, what is the angular frequency of the motion?

Solution: Yes, it is a harmonic oscillator, because the force along the stick
is F = −kx which gives a Newton’s 2. law

m
d2x

dt2
= −kx. (10)

The angular frequency is ω =
√
k/m as usual.

The system is now tilted by 90 degrees, so that the stick is vertical.

c) Find the potential function U(x) corresponding to the motion up and down
the stick. Find the equilibrium point(s).

Solution: The potential function is composed of two parts, potential energy
of gravity and potential energy of the spring. We have

U(x) = mgx+
1

2
kL2 = mgx+

1

2
kx2 +

1

2
kd2. (11)

The equilibrium point is when the derivative with respect to x is zero. We
have

−dU
dx

= −mg − kx = 0→ x = −mg
k
. (12)
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Typical mistakes: Writing some considerations involving gravity and nor-
mal forces. The question is a) was what the spring force is; nothing to do
with gravity. Misunderstanding what x is and just writing −kx. Thinking
that the equilibrium length of the spring is d. Getting sin, cos and tan mixed
up when projecting onto the stick direction. Thinking that the spring force
is kx2/2 or k(x2+d2)/2. Misunderstanding the setup, thinking that the bead
and stick are swinging as a pendulum. Writing down the wrong expression
for the potential. Thinking that the equilibrium point is given by U(x) = 0,
rather than the correct: the derivative of U(x) = 0. Calculating wrong.

Problem 3: Yo! Yoda! Yo-Yo!

M,#R# m,#r#

A yo-yo roughly speaking consists of two round, uniform discs, sandwiched
around a third smaller disc. A string is wound around the middle disc, and so
the yo-yo may roll up and down as the string winds and unwinds. Consider
such a yo-yo, with the two bigger discs having radius R = 4.00 cm and mass
M = 30.0 g each; and the smaller disc in the middle having radius r = 0.700
cm and mass m = 5.00 g. The string is taken to be massless, and infinitely
thin. The moment of inertia of a disc of mass m and radius r is I = mr2/2.
There is gravity g = 9.80 m/s2.

a) What is the total moment of inertia of the yo-yo, around an axis going
through the centre of the discs?

Solution: Each big disc has MR2/2 and the small one mr2/2. Add them up
to get

I = 2×MR2/2 +mr2/2 = 4.81× 10−5 kg m2. (13)
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The end of the string is now fastened to something at a fixed position (like a
finger), and the yo-yo is let drop towards the floor.

b) Identify the forces acting on the yo-yo, and for each, indicate whether they
provide torque, work, impulse and/or acceleration to the yo-yo.

Solution: The finger acts as a normal force on the string. The string tension
acts on the finger. The (end of the) string doesn’t move so no work, impulse,
acceleration is given to it.
The string tension acts on the yo-yo ultimately via the static friction at the
string-inner-disc interface, which we may model as a force acting tangenti-
ally at the edge of the inner disc. This force provides a contribution to the
acceleration; a torque relative to the CM; and impulse; but no work, since
the point of application does not move relative to the string (it is static, not
kinetic friction).
Gravity works at the centre of mass of the yo-yo. It contributes to the acce-
leration, the impulse and does work, but does not give any torque relative to
the CM, because the lever arm is zero.

c) What is the acceleration of the yo-yo downwards? What is its angular
acceleration? How large is the string force?

Solution: We can now write down the relevant equations, focusing on linear
acceleration of the CM a and angular acceleration α.

(2M +m)a = Fg − T, (14)
Iα = Tr, (15)
a = rα, (16)

where the last equation is the rolling without sliding criterion. Using Fg =
(2M +m)g, we can solve for a, α and T

a =
2M +m

M
(
2 + R2

r2

)
+ 3

2
m
g = 0.608 m/s2, (17)

α =
a

r
= 86.9 rad/s2, (18)

T = (2M +m)(g − a) = 0.597 N. (19)

d) How big a fraction of the total kinetic energy goes into the rotating motion?

Solution: When at some point the speed of the CM is v, we have

Ekin,tot. = Ekin,CM + Ekin,rot. =
1

2
(2M +m)v2 +

1

2

I

r2
v2, (20)

Ekin,rot.

Ekin,tot.

=
1

1 + (2M+m)r2

I

= 0.938. (21)
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We have used the rolling without sliding condition v = rω (the string winds
around the inner disc).

Typical mistakes: Forgetting that there are two big discs when computing
I. Thinking that the string force does work, and/or that gravity gives torque.
Introducing a torque apparently unrelated to the two forces in the problem.
Writing down the wrong force equations. Thinking that T acts at R instead
of r to compute the torque. The wrong rolling without sliding relation (with
R instead of r). Thinking that Fg = T . Simply assuming that acceleration
is a = g. Writing down the wrong energy relation; forgetting the rotational
component in the total energy. Calculating wrong. Inserting numbers wrong.

Problem 4: Spinning water!
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Consider a bucket of water spinning with constant angular speed ω. We are
interested in finding the shape of the water’s surface, z(r). We do this by
first noting that in the rotating frame of the bucket, a small water element of
mass m on the surface of the water is in static equilibrium. The figure shows
the three forces acting on the water element: Centrifugal force Fc, gravity Fg

and the normal force n of the rest of the water on the water element.

a) Find the angle φ as a function of r, the distance from the axis of rotation.

Solution: We write down stability equations in x and y

F cosφ = mg, (22)
F sinφ = mω2r, (23)

which gives

tanφ =
ω2r

g
. (24)

We are interested in the curve describing the water surface height, z(r).
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b) Given that the normal force is perpendicular to the surface, express the
slope dz/dr in terms of φ.

Solution: The angle φ appears so that the slope is tanφ. Hence, we have

dz

dr
= tanφ. (25)

c) Combine the results of a) and b) to find z(r). Does it make sense, and
why?

Solution: We solve the differential equation by simple integration:

dz

dr
=
ω2r

g
→ z(r) =

ω2

2g
r2. (26)

This makes sense because: Units match. Larger ω gives larger slope. Larger
g gives smaller slope.

Typical mistakes: Writing force equations down wrong. Thinking that the
slope of the curve is sinφ. Trigonometric confusion. Writing down torque
stability equations. Not knowing that v = rω. Not knowing that Fc = mac =
mrω2. Calculating wrong.
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