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Problem 1: A puck and another puck...(25 percent)

v	
ω	

m1, r1

m2, r2

A puck of mass m1 = 80.0 g and radius r1 = 4.00 cm glides across an air
table at a speed v = 1.50 m/s as shown in the Figure. It makes a glancing
collision with a second puck of radius r2 = 6.00 cm and mass m2 = 120
g (initially at rest) such that their rims just touch. Because their rims are
coated with instant-acting glue the pucks stick together and rotate after the
collision.

a) What is the angular momentum of the system relative to the center of
mass?

Solution: First, �nd the center of mass. Putting a coordinate system at
the center of m2, the particle m1 has the time-dependent position vector
(x(t), r1 + r2). The CM is then at (with silly notation, where r1 and r2 are
the radii of the discs, but r1 and r2 are the position vectors of those two
discs)

rCM =
m1r1 +m2r2
m1 +m2

=
m1

m1 +m2

(x(t), r1 + r2). (1)

The angular momentum of m1 around the CM is then (r1−rCM)×p1, which
makes x(t) vanish, and y = r1 + r2 − yCM , so that

|L| = m1v

[
r1 + r2 −

m1

m1 +m2

(r1 + r2)

]
=

m1m2

m1 +m2

(r1 + r2)v = 7.2× 10−3 kg m2/s. (2)

b) What is the angular speed about the center of mass?

Solution: After the collision, we have |L| = Iω, with I the complete moment
of inertia around the CM. Using the parallelaxis theorem, this is

I =
1

2
m1r

2
1 +

1

2
m2r

2
2 +m1D

2
1 +m2D

2
2, (3)
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where D1 and D2 are distances from the center of each disc to the CM, so
that

I =
1

2
m1r

2
1 +

1

2
m2r

2
2 +m1(y1 − yCM)2 +m2(y2 − yCM)2 =

1

2
m1r

2
1 +

1

2
m2r

2
2 +

m1m2

m1 +m2

(r1 + r2)
2 = 7.6× 10−4 kg m2. (4)

Then

ω =
|L|
I

= 9.47 s−1. (5)

Typical mistakes: Not knowing r× p but using Iω throughout. Forgetting
to compute it relative to the CM. Using energy conservation (might work out,
but then need the linear motion as well). Computational mistakes. Based on
chapters 9, 10 and 11. Hand-in problem, from book.

Problem 2: Rolling down a hill. (25 percent)

h	
L	

M,	R	

A hollow cylinder, a solid cylinder and a sphere roll down a hill. They all
have mass M = 10.0 kg and radius R = 1.00 m, and start at rest a distance
L = 10.0 m up the hill, corresponding to a di�erence in vertical height
between top and bottom of h = 1.00 m. The moment of inertia of a hollow
cylinder is MR2, of a solid cylinder MR2/2, and of a sphere 2/5 × MR2.
There is gravity g = 9.80 m/s2.

a) What is the speed of each of the objects at the bottom of the hill? How
long does it take each of them to get to the bottom?

Solution: Straight-forward use of energy conservation: potential energy is
converted to kinetic energy. Remembering the rotational energy component

3



gives:

Mgh =
1

2
Mv2 +

1

2
Iω2 =

1

2
Mv2

(
1 +

I

MR2

)
, (6)

where we have used the rolling without sliding condition v = Rω. We then
have

v =

√
2gh

1 + I
MR2

=

√
2gh

(2, 3/2, 7/5)
, (7)

inserting the moments of inertia for the three objects. This gives 3.13 m/s,
3.61 m/s, 3.74 m/s.
To �nd the time use 1-D kinematics to get to the distance L,

t =
L

vavg
=

L

(v − 0)/2
=

2L

v
, (8)

giving 6.39 s, 5.53 s, 5.35 s.

b) What would happen to the results in a) if all the masses M and radii R
were no longer the same? (You may ignore the small gravitational potential
di�erence this causes at the initial point, (di�erence in R)� h).

Solution: Nothing. M and R drop out of the equations.

c) What is the minimum static friction coe�cient µs required for each of
them to continue to roll without sliding? Does this depend on M and/or R?

Solution: There is a force of friction fs up the hill providing torque and
acceleration. There is a component of gravity down the hill Mg sin θ. And
a component of gravity into the incline, cancelled by the normal force, so
that.We can then write down the equations

Mg sin θ − fs = Ma, Linear acceleration, (9)

Rfs = Iα, Angular acceleration, (10)

Rα = a, Rolling without sliding, (11)

|n| = Mg cos θ, Normal force, (12)

fs = µs|n|, Largest static friction. (13)

This gives

µs =
tan θ

1 + MR2

I

. (14)
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Once again, M and R cancel out. Inserting the three values of I/MR2 and
using the geometry of the triangle to �nd

tan θ =
1√

102 − 12
(15)

we get µs = 0.0503; 0.0335; 0.0287 respectively.

Typical mistakes: Not using energy conservation but forces (can work, but
has to be done correctly). Forgetting rotational energy omponent. Forgetting
linear energy component. Forgetting no-sliding condition. Thinking that the-
re is rolling along a horizontal surface (then there is no acceleration and so
no force or friction). Computational mistakes. Based on chapters 2, 4, 5, 6,
7, 8 and 10.

Problem 3: Street light in equilibrium (25 percent)

M	

h	A	

C	

B	

m2
, l2

m1, l1

A lamp post consists of a vertical pole, a horizontal bar of mass m1 and
length l1 attached to it at a point B, and a diagonal bar of mass m2 and
length l2 attached to it at a point C, as shown in the Figure. The horizontal
bar is attached to the diagonal one at a point A, a distance h from point
B. At the end of the horizontal bar, a lamp of mass M has been attached,
hanging straight down. The system is in static equilibrium.

a) Decomposing the forces at points A, B and C along the vertical and
horizontal, write down the relevant force equations for the horizontal bar
and the diagonal bar to stay at rest.
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Solution: There are two systems: The horizontal and the diagonal bars. See
Figure for choice of direction of forces (there are other possibilities, but not
too many, if along the horizontal and vertical). Keep in mind that the A-force
is opposite for the two systems (Newton 3.). We can then write down:

F x
A = F x

B, no net force in x for horizontal bar (16)

F x
A = F x

C , no net force in x for diagonal bar (17)

F y
B + F y

A = Mg +m1g, no net force in y for horizontal bar (18)

F y
C − F

y
A = m2g. no net force in y for diagonal bar (19)

M	g	 m1	g	

Ax	

Ay	

Ax	

Ay	

Bx	

By	

Cx	

Cy	

m2	g	

b) Write down the torque equations, so that both horizontal bar and diagonal
bar do not rotate. For each of the two bars, use an axis at A.

Solution: Torques of force A around A is zero. For the horizontal bar, F x
B

also gives zero torque, because it is parallel to the arm. That leaves:

τm1 = −m1g

(
h− l1

2

)
, (20)

τM = Mg(l1 − h), (21)

τBy = F y
Bh, (22)

which must sum to zero.

F y
Bh+Mg(l1 − h)−m1g

(
h− l1

2

)
= 0 (23)

For the diagonal bar, we have

τm2 = −m2g
l2
2

cos θ, (24)

τCx = −F x
C l2 sin θ, (25)

τCy = F y
C l2 cos θ, (26)
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which must also sum to zero

F y
C l2 cos θ − F x

C l2 sin θ −m2g
l2
2

cos θ = 0 (27)

c) Solve the equations to �nd the forces at A, B, and C.

Solution: You solve all six equations, and get

F y
A =

[
M
l1
h

+m1
l1
2h

]
g, (28)

F y
B =

[
M

(
1− l1

h

)
+m1

(
1− l1

2h

)]
g, (29)

F y
C =

(
M
l1
h

+m1
l1
2h

+m2

)
g, (30)

F x
A = F x

B = F x
C =

(
M
l1
h

+m1
l1
2h

+
m2

2

)
g

tan θ
, (31)

(32)

Typical mistakes: Not realising that there are two systems. Not decompos-
ing along horizontal and vertical (could work, but has to be done correctly).
Not decomposing along orthogonal directions. Forgetting gravity. Computa-
tional mistakes. Doing three systems. Not realising that the A-force acts on
both systems with opposite direction.

Problem 4: Ball games in space, Part 1. (25 percent)

M	M	
m	

D	

A	 B	

Two astronauts A and B, each of massM , �nd themselves in space, a distance
D apart, and at rest relative to each other. B is holding a ball of mass m.
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a) Where is the center of mass (CM) of the astronaut-astronaut-ball system,
in a coordinate system with origin at the position of A? We will take the
coordinate x to increase in the direction from A to B.

Solution: CM is at

xCM =
mArA +mBrB +mballrball

mA +mB +mball

=
M +m

2M +m
D. (33)

B now throws the ball towards A, with a speed v.

b) What is the velocity of B after throwing the ball? Where is the CM of the
entire system?

Solution: Conservation of momentum of the ball-B system gives

MUB +mv = 0→ UB = −mv
M

. (34)

CM of whole A-B-ball system is unchanged, because it is an isolated system.
Objects inside may move around, but the overall CM stays put.

c) A catches the ball. What is then the velocity of A + ball? Where is the
CM of the entire system?

Solution: Conservation of momentum in A-ball system gives

(M +m)UA = mv → UA =
mv

M +m
. (35)

CM of whole system is still unchanged.

M	M	
m	

D	

A	 B	

Now consider the same initial situation, but imagine that the astronauts had
been connected by a massless, unstretchable string.
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d) What is the velocity of B after he has thrown the ball? Where is then the
CM of the whole system? What is the velocity of A after he catches the ball?

Solution: Now it is the A+B system, that e�ectively throws the ball, so it
is like b) but with 2M instead of M .

2MUB +mv = 0→ UB = −mv
2M

. (36)

CM of whole system is unchanged, and so after he catches the ball, and all
relative motion has stopped, all speeds must be zero, UA = 0, as for the
initial state.

Typical mistakes: Using energy conservation instead of momentum. Not
realising that CM stays put always, and calculating with time-dependent
positions of ball and A and B...it could work but then has to be done correctly.
Thinking that there is gravity and it is projectile motion. Based on chapter
9.

Problem 5: Ball games in space, Part 2 (25 percent)

M	M	
m	

D	

A	 B	

Consider the pair of astronauts in problem 4 d), but imagine that the con-
nection was not an unstretchable string, but a massless spring with spring
constant k, where we will assume that the equilibrium length is D, the initial
separation. In the following, neglect the time it takes the ball to leave the
hand, relative to the time it takes the spring force to react.

a) Taking the result of 4 b) for the velocity of B (if you didn't solve it, use the
symbol UB), go to the center of mass (CM) frame of the astronaut-astronaut-
only system (not including the ball!). Find the position and velocity of the
ball in that frame as a function of time (up until it is caught by A).
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Solution: In the original frame with B moving with UB and UA being statio-
nary, the CM of the A-B system moves with UB/2. Going to the CM frame,
the initial velocities are

v′ = v − UB/2 = v
(

1 +
m

2M

)
, (37)

U ′A = 0− UB/2 =
mv

2M
, (38)

U ′B = UB − UB/2 = −mv
2M

. (39)

This makes sense, since A and B have the same mass, and move symmetrically
to the left and the right. The ball does not accelerate until it gets caught, and
so its position is given by the constant speed equation, starting at position
D/2

xv(t) = D/2 + vt
(

1 +
m

2M

)
. (40)

b) Still in the CM frame, show that the separation between A and B can be
described as a harmonic oscillator. Find the angular frequency, ω. What are
the initial conditions, corresponding to just after the ball has left the hand
of B?

Solution: The stretching of the spring is in terms of the combination (neg-
lecting ' for CM frame)

∆x = xB − xA −D. (41)

Note also that xA = −xB. Stoke's law, and the orientation of the axes give
for the two masses

MaA = k∆x, (42)

MaB = −k∆x. (43)

This gives

d2∆x

dt2
= −2k

M
∆x, (44)

which is a harmonic oscillator with ω =
√

2kM . The initial condition is that
∆x(0) = 0 and d∆x/dt(0) = −mv/M .

c) Find the position of A in the CM-frame as a function of time. Write down
an equation for the time tcatch when the ball reaches the position of A. You
do not need to solve the equation.
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Solution: The harmonic oscillator solution is

∆x = a cosωt+ b sinωt, a = 0, b =
−mv
Mω

. (45)

Also, xA = −D/2−∆x/2. Then the catch happens (the �rst time) when

xA = xv → −
D

2
+

mv

2Mω
sinωt =

D

2
+ vt

(
1 +

m

2M

)
. (46)

Typical mistakes: Very few solved this problem. Some of you wrote down
the harmonic oscillator solution, and an expression for ßomega. But very few
managed to go to the CM frame and realised what the correct frequency was.
This problem is extra points in addition to the 100% from problem 1-4.
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