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MATERIAL TECHNOLOGY

When a steel rod is pulled it stretches and gets slightly thinner, as shown strongly exaggerated in Fig. 1.  If it is not pulled too hard it will contract back to its original shape when it is released.  But pulled too hard it will contract only partly.  When released it will be permanently longer and thinner.  And the steel will be harder, more difficult to cut for instance.  This is called work hardening.  The same behavior is seen if it is pushed or compressed.  Fig. 2 illustrates this.  The relative elongation L/L depends only on the pulling force F divided by the cross section area A of the rod.  This behavior is therefore a material property; it does not depend on the size of the rod.


Figure 1
Steel behavior when stretched.  Most metals behave like this.

Definition of important material parameters:


-  Relative elongation:
Strain  
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-  Force per unit area:

Stress  
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Figure 2 shows how stress and strain are related in a metal like steel.  A rod of length L is stretched a small distance L, and the force needed is measured.  Strain and stress are calculated from the above equations and plotted in the diagram.  The rod is stretched more and new values are plotted, and so on.  If the rod during this process is always made longer than before, the result is as shown in Fig. 2.  The rod is stretched until it breaks.  If this process is repeated with an identical rod, but now compressed instead of stretched, the result is as shown to the left of the stress axis.  Here we have used the convention that if the rod is stretched L is positive, when compressed it is negative.  And that a force stretching the rod is positive, a force compressing it is negative.  This is just a convention; some times it is defined the other way around.  But here it is always used that stretching is positive.  In accordance with this the diameter decrease of the stretched rod, shown in Fig. 1, is negative.  Across the rod there is a negative strain, even if there is no stress.  In order to have stress in any direction there must be external forces acting in that direction, and there are no such forces acting against the sides of the rod in this case.


Figure 2
Steel behavior when stretched or compressed.  Stress as a function of strain is shown for both cases.  The black curve shows continuous stretching or compression.  The red and orange curves show stretching and then relaxing until the stress is zero before stretching it again, and correspondingly for compression.  The green rectangle shows the region of linear elasticity, the yellow rectangles show the regions of yielding.

The figure shows a linear relationship between the strain and the stress for stress values up to a certain limit.  This limit is called the yield stress Y and is an important parameter.  Below this limit the steel is linear elastic.  In the figure the green area shows the region of linear elastic behavior.

If the stress becomes larger than this parameter the stress does not increase as fast for increasing strain, and the relationship is not linear.  This behavior is called yielding, and the regions of yielding are shown by yellow, one for stretching and one for compression.  For a sufficiently large stress the rod breaks, this is the ultimate strength of the rod.  In compression the yield stress is actually slightly larger (in absolute value) than for stretching, but for most calculation purposes it is assumed equal.

Another very important difference between these regions is that in the region of linear elasticity the rod will return to its original length and diameter if the stress is reduced to zero, and it will return along the same line as when it was stretched.  This means that the steel is virtually perfectly elastic in this (green) region, all the energy used to stretch the rod is returned when it contracts back to its original length.  This is not strictly true, but the loss of energy is very small.  This is why a tuning fork keep on sounding for a long time, and the main loss of energy there is due to air friction and transfer of energy to sound waves.

In the region of linear elasticity the stress is proportional to the strain, the constant of proportionality is called the modulus of elasticity, usually the symbol E is used for this constant.  This can be written as:
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Standard steel value is E = 210.109 N/m2
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The modulus of elasticity is a material constant.  It is different for different materials, for steel it is around 210.109 N/m2.  Steel is iron containing 0.5 – 1.8% carbon.  It is usually alloyed with small quantities of other metals also.  The carbon content is mainly responsible for the possibility of heat tempering of steel.  Heat tempering is done by heating and then rapidly cooling steel, the yield stress can be considerably increased.  The steel becomes harder, but the modulus of elasticity remains the same.  And due to the small quantity of other metals in alloyed steel, the modulus of elasticity has approximately the same value for all types of steel and iron.  But the yield stress can be very different, both due to alloying and to heat treatment (tempering).  The yield stress is in the range 200.106 N/m2 to 1600.106 N/m2, or 2000 to 16000 bar.  As E is a measure connected to the elasticity of the material, it is a common misconception that spring steel has a higher modulus of elasticity than soft steel.  This is completely wrong, all steel types and qualities have approximately the same value of the modulus of elasticity.  The difference between spring steel and soft steel is that the value of the yield stress is much higher in spring steel.

If the steel yields, energy is used to rearrange crystal structures and boundaries within the steel.  If the stress then is reduced to zero the rod contracts as shown by the brown and red lines in Fig. 2.  The downward arrows show the direction of movement of the steel parameters.  Note that when the stress is zero the rod is now longer than its original length.  The energy spent in elongating the rod after it has reached its original yield stress is not recovered; it is lost in changing the steel structure.  This is actually a great advantage in many dangerous situations; the energies released in blows and collisions are largely absorbed by the yielding steel, strongly reducing any rebounds and other dangerous effects.

If the rod is stretched again it moves back along the same line, as shown by the upward arrows.  As it reach the yield curve it starts to yield again, following this curve.  In the new elastic region of the stressed steel, below its new yield stress, the straight line is parallel to the line in the original elastic region; the constant of proportionality between strain and stress has not changed.  That is, the modulus of elasticity is unchanged.

This shows the observed fact that if stress in yielding steel is reduced it becomes linear elastic again, even if the stress is still larger than the original yield stress.  By loading the steel above its original yield stress the yield stress has increased, this behavior is work hardening.  But the ultimate strength has not increased.  If the rod is stretched further it follows the original yield curve to the point of breaking.  Note that the yield curve shown (black line in the yield region) only shows the steel behavior when the rod length is increasing, not when it is decreasing.

For the red line the steel was almost at its ultimate stress limit before the stress was reduced.  Its yield stress is now almost equal to this stress limit.  Now we have steel of spring steel quality.  The problem is that if it is hit by anything hard it cannot soften the blow by yielding if the resulting stress is above the yield stress, so it breaks instead, like a crystal.  This can be very dangerous; one does not want to have high-pressure steel pipes that break when accidentally hit.  A blow that makes a small dent in a soft steel pipe will not break a pipe of higher yield stress, but a blow breaking the hard steel pipe will only make a bigger dent in the soft steel pipe.  In this sense steel with a very high yield stress is much weaker than steel with a lower yield stress.  In steel constructions and equipments the balance between a desired high yield stress and the ability to yield sufficiently to avoid breaking must be carefully considered.

Note that according to the behavior of steel described here it is not possible to reduce the yield stress again by mechanical treatment.  But this can be done by heat treatment, by heating the steel sufficiently and then cooling it very slowly the yield stress is decreased.  This is not, however, a possible method for repairing equipment that has been stressed too much and started to yield, because the shape of the equipment has changed, and the steel is never stressed by the same amount everywhere.  This heat treatment will reduce the yield stress also where it still has its correct value.

The general rule is therefore that any yielding of steel in equipment must be considered as destructive, and the equipment must be replaced.  In all calculations of equipment loading it is therefore sufficient to assume that the steel is within its region of linear elasticity.  If it turns out that the stress anywhere is larger than the yield stress, the equipment is considered destroyed.  Here we shall mainly calculate stress in pipes and rods, and the formulas needed for this is presented in the following sections.

The relative reduction of the rod diameter when the rod is stretched is proportional to the length increase, and is given by:
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Standard steel value is  = 0.29

(4)

where  is another elastic constant called the Poisson relation.  For steel it is around 0.29, other materials generally have different values, but its value must lie between 0 and 0.5 for all possible materials.  The minus sign in the equation shows that the pipe get thinner (negative D) when the axial stress is positive.  For simple homogeneous and isotropic materials (meaning equal properties in all directions), only two elastic parameters are needed to completely specify the linear elastic behavior.  All other elastic constants, for instance volume compressibility and shear modulus can be calculated from these two parameters.

Under most loading conditions the steel is stressed in different directions.  In order to describe this situation a three-dimensional coordinate system is chosen, usually one that fits the geometry of the steel body.  For a pipe this would be a system with cylindrical coordinates, the distance z along the pipe central axis, the distance r from this axis, and the angle  of rotation around this axis.  For the general discussion done first it is easier to use a Cartesian coordinate system with x, y and z-axes at right angles to each other.  The stress and strain along these three independent, perpendicular axes are given indexes x, y and z, respectively.  

It can be shown that stresses always have maximal (biggest or smallest) values along three independent, perpendicular directions in materials like steel, that is, in homogeneous and isotropic materials.  It is then an advantage to choose the coordinate system axes along these principal stress axes.  Note that this is often possible with pipes and rods also, usually one principal stress in the wall of the pipe is along the pipe central axis, one is directed along the pipe radius, which is perpendicular to the pipe axis, and one is directed along a tangent to the pipe circumference, along the  direction.  For these directions we use indexes z (pipe axis), r (radius), and t (tangent direction).  For the last we could have used , and this we will do if the stress in this direction changes with the angle .  But usually, due to symmetry, the tangential stress is constant with respect to the angle giving the position around the pipe or rod, independent of .  Then we use the index t.

For a Cartesian coordinate system Hook’s law gives:
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In addition to the stresses along independent directions, there are three independent shear stresses possible.  But these do not interact with the axial stresses.  For the case with the stretched rod shown in Fig. 1, only the stress along the rod axis is different from zero.  A rod or pipe axis is often assumed to lie along the z-axis of the coordinate system.  This gives:  
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The strains in the x and y directions are also given by Eq. (4), giving the same result as shown.  Material technology suggests different methods to calculate behavior under several independent stress forces, but the most general and most accurate is the von Mise’s equation, where an equivalent, single stress is calculated for any given position in the material:
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If the equivalent stress is larger than the yield stress the material will yield at the point considered.  Note that in order to find if a piece of steel yields or not, the three stresses must be known (calculated) at every position in the material.  The only problem with this equation, besides that it is more difficult to calculate than the more standard approach, is that it only tells if the material yields, not if it breaks.  This is not a large problem, because in virtually all practical cases the material will yield before it breaks, as for the rod stretched in one direction only.  Note that this has nothing to do with the yield stress being close to the ultimate stress.  It applies to soft steel with a yield stress several times lower than the ultimate stress also.  

In order to use this equation the stresses must be found as functions of position in the steel.  They depend on both the geometry of the equipment, and the forces and pressures acting upon it.  For a pipe not subjected to bending forces, this is solved, and is often called the Lame solution.  Due to symmetry the stress in the pipe wall must be independent of the position  around the circumference of the pipe, and in a long pipe, far from both ends, the stress must also be independent of the position z along the tube axis.  But then the axial stress must be evenly distributed over the cross section of the pipe wall, if not the walls would bend.  This would give absurd results and is certainly not observed.  With respect to position the stress in the wall is therefore a function only of the distance r from the pipe axis, and for the axial stress it is also constant, independent of r also.  The boundary conditions are found by using force balance consideration.  They are:

-  Axial stress times axial cross section area must be equal to the axial force.

-  Radial stress at the inner surface of the pipe must be equal to the inner pressure.

-  Radial stress at the outer surface of the pipe must be equal to the outer pressure.

Pressure forces act perpendicular against a solid surface.  The radial stress in the steel is the only stress component that acts against the steel pipe surface; the two other stress components act parallel to it.  Using cylindrical coordinates with z, r and t, as explained earlier:
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where
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is the stress in the axial direction
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is the stress in the radial direction
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is the stress in the tangential direction
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is the inner radius of the pipe



[image: image13.wmf]o

r


is the outer radius of the pipe
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is the pressure inside the pipe
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is the pressure outside the pipe
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is the axial force acting on the pipe wall

It is of some interest that in the sum of the radial and the tangential stress is constant:
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In the standard theory for linear elastic materials the rule is that the effects of independent forces can be calculated as if each force was alone, then the results can be added (this is more or less the definition of linearity).  This means that if other forces are acting on the pipe, like twisting or bending forces, the stresses developed due to these forces can be added to the stresses found here for pressures and axial force.  For the present we put only the stresses given by Eq. (8) into von Mise’e equation, getting:
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Note that the outer diameter is of course always larger than the inner, so 
[image: image19.wmf]2

2

i

o

r

r

-

always is positive.  Also, all terms inside the square root are squared, and will be positive.  The first term gives the main effect of pressure.  This effect is proportional to the pressure difference between the inside and outside of the pipe, independent of whether the largest pressure is outside or inside.  The stress loading in the pipe wall decreases from the inside wall towards the outside wall, and it is inversely proportional to r2.  In order to find if the pipe can withstand the pressure loading without yielding one must find the place where the stress is largest.  Here it is on the inside wall of the pipe, where r has its smallest value, r = ri.  By using this value in the equation and moving  outside the square root:
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The safety factor SF for any equipment is the yield stress of the material the equipment is made of, divided by the largest stress found anywhere in the equipment material.  By dividing this equation by the yield stress we get the inverse of the safety factor, giving after some manipulation:
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where:
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  is the pressure difference between the inside and outside of the pipe
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  is a mixture of the axial force and effects of the outer and inner pressures.  It is not an actual force in the system, but it can be calculated, and is a very useful parameter in the following discussions and calculations.  It is called the effective (axial) force.
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  is the inner pressure in the pipe with closed ends, just sufficient to make the pipe wall material yield.  There must then be no outside forces acting on the pipe.

FY  is the axial force that just makes the pipe material yield when there are no pressures acting on the pipe.
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