Høsten 2015

FYS100 Fysikk Problems week 36

Have a go at these:

First some problems from the book:

- 3.7, 3.8, 3.10 (ignore the word *graphically*).
- 3.23, 3.36

Additional Problem 1: Consider the vectors (in cartesian coordinates, given some basis and coordinate system),

$$\overrightarrow{\mathbf{A}} = (-1,4), \qquad \overrightarrow{\mathbf{B}} = (1,2), \qquad \overrightarrow{\mathbf{C}} = (2,1).$$
 (1)

Compute

- The projection of $\overrightarrow{\mathbf{A}}$ onto $\overrightarrow{\mathbf{B}}$.
- The projection of $\overrightarrow{\mathbf{A}}$ onto $\overrightarrow{\mathbf{C}}$.

Is the sum of the projections equal to the original vector $\overrightarrow{\mathbf{A}}$? Why?

Find the decomposition of \overrightarrow{A} onto \overrightarrow{B} and \overrightarrow{C} . Use whatever method you find simplest.

Additional Problem 2: Consider the vectors in 3-D

$$\overrightarrow{\mathbf{A}} = (1, 2, 1), \qquad \overrightarrow{\mathbf{B}} = (2, 1, 2).$$
 (2)

Compute

•
$$\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$$
.
 $\rightarrow \rightarrow$

• $\mathbf{A} \cdot \mathbf{B}$.

Find the relative angle between the vectors, using either the scalar or the vector product. Do they agree?