
Høsten 2015

FYS100 Fysikk
Problems week 43

Have a go at these. And for each, make a little sketch to illustrate the solution.

Some problems from the book:

• 9.2, 9.6+7, 9.16, 9.24, 9.29, 9.47, 9.63.

Solution: 9.2 Ekin = mv2/2 and p = mv. Then on readily finds that

v =
2Ekin

p
= 2× 275/25 = 22 m/s, (1)

m =
p2

2Ekin

= 1.14 kg. (2)

Solution: 9.6+7 Note that it is the relative speed, we are given. Call vg
and vp the speed of the two relative to the ice, and vr = vg − vp the relative
speed. Then momentum conservation (starts at zero) gives

mgvg +mpvp = 0→ vg =
mpvr

mg +mp

, vp = .
−mp

mg +mp

vr, (3)

which when inserting the nmbers gives vg = 1.15 m/s, vp = 0.346 m/s.
Solution: 9.16 a) The initial momentum in the x − y plane is −→p i =
(−vi cos θi,−vi sin θi), where vi = 15 m/s and θi = 45◦. And after the hit,
the final momentum is −→p f = (vf cos θf , vf sin θf ), where vf = 40 m/s and
θf = 30◦. Then the impulse is given as

−→
I = −→p f −−→p i = (9.04, 6.12) kg m/s. (4)

b) Integrating
−→
Fdt for the described development of the force gives

−→
I =

24 ms
−→
Fmax, where

−→
Fmax is the maximal force. We find

−→
Fmax =

−→
I

0.024 s
= (0.378, 0.256)× 103 N. (5)

Solution: 9.24 a) Momentum conservation tells us that in this perfectly
inelastic collisions,

mv1 + (2m)v2 = (3m)vf → vf =
v1 + 2v2

3
. (6)
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b) The change in kinetic energy is

∆Ekin =
1

2
(3m)v2f −

1

2
mv21 −

1

2
(2m)v22 = −1

3
m(v1 − v2)2. (7)

Solution: 9.29 a) After dropping a height h, the speed of both of the balls
is
√

2gh = 4.85 m/s, since energy conservation requires mgh = mv2/2. Then
the basketball velocity flips and it immediately colide with the tennis ball.
At what height, we don’t know but it is the diameter of the basketball. b)
Now they collide elastically, and so the tennis ball gets a speed

vft =
mt −mb

mt +mb

(−
√

2gh) +
2mb

mt +mb

√
2gh =

3mb −mt

mt +mb

√
2gh = 12.8 m/s. (8)

Using again energy conservation, it gets to a height h = v2/(2g) = 8.41 m
above the collision point, so 7.21 m above here it started.
Solution: 9.47 In other words, find the centre of mass of that object. Since
it is equally fat", we don’t need to care about the 3.6 m side. It is also
clear that the CM in in the middle, at 32.4 m from either end. The only
thing remaining is the height, yCM . Again, it is enough to calculate it for one
half of the object. The two halves are symmetric, so will have the same CM
height; and hence the sum of the two will again have the same CM height.
From example 9.12, we know that that point for a right triangle is 2/3 along
the side (closest to the right angle). That of course applies to both the a- and
b-sides of the triangle in example 9.12. Hence, yCM = 1/3 × 15.7 m = 5.23
m. Then the total potential energy of the whole construction, relative to the
rocks being all spread out on the ground, is MgyCM = 3.57× 108 J. For this
we needed to compute the total mass 15.7× 3.6× 32.4× 3800 = 6.96× 106

kg.
Solution: 9.63 a) Using the rocket equation, we have

vf = ve ln

(
Mi

Mf

)
→Mi −Mf = Mf

(
evf/ve − 1

)
, (9)

where Mf is the mass of the rocket at the end (so what we need to propel,
3 tonnes); vf is the required final speed, 10 km/s; ve is the exhaust speed 2
km/s; and Mi −Mf = Mfuel is the weight of the fuel. Mfuel = 442 tonnes.
b) If instead ve = 5 km/s, we would have Mfuel = 19.2 tonnes. c) If one
would throw the entire fuel mass off in one go, one would need 2.5 times
more fuel with the slow ve. All the exhausted fuel moves with ve relative to
the initial rest frame. But with the rocket, the exhaust speed is relative to
the current speed. And the fuel emitted later moves with small speed relative
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to the initial rest frame, even though it always has speed −ve relative to the
instantaneous rest frame.
Additional problem 1: (Konte-exam, Feb. 2015)

1

23

In the game of curling, massive stones are sent sliding over (essentially) fric-
tionless ice towards a target circle at the far end of the pitch (the grey ring
in the figure). The radius of the target circle is 2.00 m. Two teams take turns
sliding stones, and the winner is whoever gets a stone (or several stones) to
stop closest to the centre. All the stones have the same mass of M = 20.0
kg, their radius is 15.0 cm, and all collisions are taken to be elastic. There is
gravity, g = 9.80 m/s2.
We join the game as the second team (black stones) is ready to throw their
last stone, and the configuration is as shown in the figure; the stone of the
opposing team (white stones) is currently in the middle of the target circle,
with several black stones around.
a) What happens, if the black team choose to hit the central white stone
exactly in the middle? Why?
Solution Exactly central collision with momentum and energy conservation
in one dimension. Then the only option is for the black stone to stop and
the white one to go off with the same speed as the black had. The white will
then hit the black one ahead of it, stop, while that black goes off with the
same speed as the original black had (ignoring friction).
b) The team choose to hit the central white stone slightly to the left of middle,
so that it leaves the target circle at an angle θ, exactly halfway between two
other black stones (1 and 2, as shown in the figure). Assume that the speed of
the incoming black stone immediately before impact is v = 1.00 m/s. What
is the speed of the white stone, immediately after impact? Does the black
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stone itself (the one they throw) leave the circle? What is the speed of that
stone immediately after impact?
Solution We need to write down the equations for momentum and energy
conservation in two dimensions, but remembering that all masses are the
same (and cancel out)

x -direction: vxw + vxb = 0, (10)
y -direction: vyw + vyb = v, (11)

Energy: (vxw)2 + (vyw)2 + (vxb )2 + (vyb )2 = v2, (12)

Hitting exactly between the two black stones, means and angle of 45◦, so
that vxw = vyw. Also, equal mass stones with one at rest scatter at a relative
angle of 90◦, so that the black stone goes at 45◦ to the left. Hence vxb = −vyb .
As a consequence

vyw = vyb = vxw = −vxb =
v

2
= 0.500 m/s, (13)

|vw| = |vb| =
√

1

2
= 0.707 m/s. (14)

Both stones leave the circle, not hitting any of the other black stones.
c) Now assume that the ice and stone have a small friction between them,
parametrized by a coefficient of kinetic friction of µk = 0.02. How far does
the black stone slide after the collision before coming to rest? Does it in fact
leave the circle? How far does the white stone slide before coming to rest?
Does it leave the circle?
Solution Simplest is to use energy considerations. The work done by friction
on the stone is W = Mgµkd, when sliding a distance d. And so it comes to
a stop after

Mgµkd =
1

2
M |vb|2 → d =

|vb|2

2µkg
= 1.28 m. (15)

Since radius of the circle is 2.00 m, the black stays inside. Same thing with
the white one.
d) What possible angles θ could the black team choose to push the white
stone instead, if they want the white stone to leave the circle (including
friction), but have the black stone stay in the circle (including friction)?
Is that possible without hitting any of the other black stones, given the
configuration of stones shown in the figure? Why/why not?
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Solution If instead of 45◦, the angle of scattering would have been θ (measu-
red from forward, the y-axis), we would have the equations

x -direction: vxw + vxb = 0, (16)
y -direction: vyw + vyb = v, (17)

Energy: (vxw)2 + (vyw)2 + (vxb )2 + (vyb )2 = v2,

(18)
→ |vb| = v sin θ, |vw| = v cos θ. (19)

In order for the white stone to leave the circle, we want

|vw|2

2µkg
=
v2 cos2 θ

2µkg
> R→ θ < cos−1

√
2Rµkg

v2
' 27.7◦. (20)

In order to miss stone 1, the centres of that and the white stone must be at
least 30.0 cm from each other, corresponding to (see figure)

0.3

R
>
√

sin2 θ + (1− cos θ)2 =
√

2(1− cos θ)→ θ > cos−1

(
2− (0.3/R)2

2

)
' 8.60◦.

(21)

So the white stone will be kicked all the way out of the circle for an angle
between 8.60◦ and 27.7◦.
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