Pressure Curve Capillary Drainage Pc = Po -Pw entry prisure Pc = 2 Tow cose 0) ~ 15 1 Lube J-function 1 - practical tool to scale the capillary pressure curve for rocks within the same lithology Pc = Pc (Sw), k = 4r2, Pc = 250w (050 r= V8/k => Pc= 2000 cosa
V8 Vk/6 Ve/6 VZ for a single tube Pc = Tow cosa 7(Sw) Ve/4 1 Leveretts J-function F(Sw) = [V/4 Pc] lab

Example if we use air/water in the lab Jour = 70 mN/m to measure Pe What I how would be in the case of oil and water?

$$J(S_w) = \frac{\sqrt{K/\phi}}{\sigma \cos \theta} p_c(S_w) \,.$$

Pc = apg h about Funh

In the following we will put $\cos\theta=1$. Assume that we have a porous medium that varies in permeability within the same lithology. We divide this variation in two groups, one with low permeability 200 mD (group 1), and one with a high permeability 500 mD (group 2). Assume that they have the same porosity. Group 1 and 2 can be described with the same J-function, decide if the following statements are true or false:

- i) $J(S_w)$ (group 1) = $J(S_w)$ (group 2)
- Yes ii) $p_c(S_w)$ (group 1) $> p_c(S_w)$ (group 2)

No iii) Residual saturation is larger for the low permeable group

The *J*-function for the two groups is given in Table 1. Use $\theta = 0$, $\sigma_{ow} = 30$ mN/m, $\phi = 0.30$, $\rho_w = 1050$ kg/m³, $\rho_o = 850$ kg/m³.

f) From Table 1, find the water saturation as a function of height over the free water level $(p_o = p_w)$ for the low permeable and high permeable rock. That is, make a table with one column with the water saturation and corresponding columns for the height over the free water level for the low and high permeable rock. (Assume that $1D \simeq 1(\mu m)^2$)

S_w	$\frac{\text{J functio}}{J(S_w)}$ n	Pc = AP
1.000	0.00	•
0.950	0.22	
0.900	0.31	
0.750	0.55	
0.600	1.02	
0.450	1.66	
0.300	2.84	
0.250	3.80	
0.235	4.23	
0.235	5.29	

In the following we will take a closer look at an oil reservoir. We will define the following volumes:

On the left hand side there is a reservoir volume of gas (ΔV_g^R) and oil (ΔV_o^R) . When one unit of oil is taken up to surface conditions, there is produced a volume of oil $(\Delta V_{o,o}^S)$ and a volume of gas originally dissolved in the oil $(\Delta V_{g,o}^S)$, accordingly for the gas phase. We will ignore the possibility for dissolved oil in the gas phase, i.e. $\Delta V_{o,g}^S=0$.

g) Define the volume factors B_o , B_g , dissolved gas oil ratio R_s and total produced gas oil ratio R_p . If the pressure is larger than the bubble point pressure, show that $R_p = R_s$.

The equations for material balance is:

$$F = N(E_o + m E_o + E_c) + W_e B_w. (1)$$

where:

Dercy law single phase absolute permeabillity $q = \frac{1}{L} \frac{1}{L} \frac{1}{L} \frac{1}{L}$ rock property

2-phase Dercy law:

$$qw = \frac{kw \cdot A}{\mu w} \frac{\Delta Pw}{L}$$

$$Po - Pw = Pc(Sw)$$

$$qo = \frac{ko \cdot A}{\mu o} \frac{\Delta Po}{L}$$

relative permeabilities: $kr_i w = \frac{kw}{k}$ $kr_i o = \frac{ko}{k}$

-relative permeabilities are a function of pateration

Krie [0,1] -> measure experimentally

2 unnkady state

\[
\frac{9^{17}}{7^{10}}\)
\[
\frac{70}{7^{10}}\]

1 Drainage

Pe-curve does not tell about the time it takes to drain the

- 1 krw=1 Sw=1 (kro=0)
- @ when oil entes the water rel. perm drops
- 3 km=0 Sw=SwR
- 4 kro=0 kntil So= Soc
- 6 kro≥0,7 at Sw=SwR

