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Exercise e1. 
 
Time derivative is 0 since ϕρ  is constant. Moreover, µρ /k  is also constant and (1.1) is 
obtained. 
The general solution of (1.1) is given by 
                                   21 axaxp +=)(  , a1 and a2 are arbitrary constants. 

From the boundary conditions: 
Darcy’s law is used to determine a1 as function of Q 
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Using p(L) = p0 results in equation (1.2). 
 
 
Exercise e2. 
 
The equations (2.1) are first order ordinary differential equations with general solutions 
                               cppc BeAe r == ρϕ       , , 
where A, B are arbitrary constants. Unique solutions are obtained by introducing measured 
values  00 , ρϕ  at reference pressure 0p  , i.e  0000 pp ρρϕϕ == )(   ,)( . 

The reference values are used to determine the constants A, B ,  
                                  00

00      , cppc eBeA r −− == ρϕ , 

and (2.2)  is established. 
 
Taylor expansions of (2.2) 
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Consider the left hand side of equation (3). Using formula (2.3) for ρ                                                 
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since c is small. 
 
Since terms containing ccr  can be neglected ϕρ can be written   
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and the right hand side of (3) becomes 
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Equation (2.4) is now deduced.           
 
References to analytical solution of heat equation 
               http://www-solar.mcs.st-and.ac.uk/~alan/MT2003/PDE/node21.html 
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Solution Exercise e3. 
 
Using assumptions on ρϕ ,  equation (6) can be written 
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All parameters except pressures are constants in the equation above and equation (3.1) is 
obtained. 
Equation 3.4 is used to compute the solution for blocks 2, 3 and 4, first for time n = 1 and then 
for time n = 2. No computations are needed for blocks 1 and 5 where the value of p is equal to 
1 for all times.  
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Explicit solution
initial

step 3

step 6

  1     2     3     4   5 

n=0  1  2.5    4    3   2 

n=1  1  2.5  2.75    3   2 

n=2  1  1.88  2.75  2.38   2 

n=3  1 1.88 2.13 2.38   2  


