

FACULTY OF SCIENCE AND TECHNOLOGY

Date: December 18. 2009.

SUBJECT: PVT-analysis MPE 510

Time:4 hoursHelps:Calculator

The exam consists of 3 pages

REMARKS: Additions: 1

Problem 1.

A bottom hole sample (BHS) is taken from a reservoir and brought to a PVT-lab. Given reservoir data:

$T_{res} = 130 \ ^{o}C$
$P_i = 450$ bara
$P_{b} = 332.5$ bara
$\Phi = 0.25$
$S_{wi} = 0.25$
10^{6} m^{3}

The BHS undergoes a single flash to standard conditions, and the following data are given:

$GOR = 382 \text{ Sm}^3/\text{Sm}^3$		
$(B_o)_b = 2.29 \text{ m}^3/\text{Sm}^3$		
$M_{STO} = 187$		
$\rho_{\text{STO}} = 839.4 \text{ kg/m}^3$		
$\gamma_g = 0.837$		
$(M_o)_{res} = 59.5$		
Comp. of STO as molefractions:	Xi	$(i = C_1 - C_{10+})$
Comp.of gas as molefractions:	\mathbf{y}_{i}	$(i = C_1 - C_{10+})$

<u>a.</u>

- 1. Characterize the reservoir fluid by means of a PT-diagram.
- 2. M_{STO} is determined experimentally. Describe <u>shortly the principles</u> of the analysis. Use formula.

- 3. The weight % of each of the components in STO is experimentally determined by gas chromatography. Give a <u>short description of the principles</u> of the analysis. Use formulas.
- 4. Derive a formula to calculate M_{C10+} for STO; $M_{C10+} = f((w\%)_i, (wt\%)_{C10+}, M_i)$ where $i=C_1-C_9$ for x_i and $i=C_1-C_9$ for M_i .
- 5. Derive a formula for ρ_{C10+} for STO; $(\rho_{C10+})_{STO} = f(\rho_i, M_i, x_i)$ where $i=C_1-C_{10+}$ for M_i and x_i and $i=C_1-C_9$ for ρ_i .
- 6. Calculate the composition as molefraction of reservoir fluid; $z_i = f(x_i, y_i)$.

A Constant Mass Expansion (CME) was performed, and the data from the analysis are presented below.

Pressure Bara	Rel. Vol V/V _b	Compress 1/bara	Y Factor	Density g/cm ³
500.00	0.9261	3.563E-04		0.5808
450.00	0.9439	4.073E-04		-
425.00	0.9539	4.379E-04		0.5638
400.00	0.9648	4.728E-04		0.5575
375.00	0.9768	5.130E-04		0.5506
350.00	0.9899	5.598E-04		0.5433
332.51	1.0000	5.973E-04		-
325.00	1.0091		2.53	
300.00	1.0443		2.45	
250.00	1.1455		2.27	
200.00	1.3174		2.09	
150.00	1.6378		1.91	

Constant Mass Expansion at 130 °C

<u>b.</u>

- 1. Verify that P_b is correctly determined.
- 2. Calculate the density of reservoir fluid at P_b and P_i at T_{res} . (Answers: $\rho_{ob} = 537.5 \text{ kg/m}^3$; $\rho_{oi} = 563.5 \text{ kg/m}^3$)
- 3. Based on the given reservoir bulk volume and supposing the reservoir fluid is produced to the surface by a single flash to standard conditions, calculate IOIP (Sm³) and IGIP (Sm³).

(Answers: IOIP = $8.674 \times 10^4 \text{ Sm}^3$; IGIP = $3.3134 \times 10^7 \text{ Sm}^3$)

4. Suppose that the fluid production in the pressure interval P_i to P_b is only related to the expansion of reservoir fluid, i. e. a closed reservoir. Calculate the recovery of STO (Sm³) and gas (Sm³) from the reservoir for this pressure decline. What is the corresponding recovery factor in %?

Below the saturation point, a differential gas liberation analysis is performed, and the data are shown below.

Pressure Bara	Oil FVF B _{od}	R _{sd} Sm³/Sm	Gas FVF ³ B _{gd}	Oil Dens g/cm ³	Z FactorGas
332.51	3.081	566.7		0.5378	
300.00	2.634	436.1	4.470E-03	0.5662	0.939
250.00	2.249	317.7	5.151E-03	0.6025	0.903
200.00	1.997	237.5	6.318E-03	0.6354	0.887
150.00	1.809	176.8	8.413E-03	0.6668	0.886
100.00	1.655	127.7	1.279E-02	0.6978	0.898
50.00	1.516	84.9	2.632E-02	0.7301	0.923
1.01	1.069	0.0	1.437E+00	0.8102	0.986
1.01	1.000			0.8663	

Differential Gas Depletion at 130 °C

<u>c.</u>

- 1. Describe shortly <u>the principles of differential gas liberation</u> analysis and its application.
- 2. Define the parameters: B_{od} , R_{sd} and B_{gd} .
- 3. Suppose the reservoir is produced by just a pressure depletion process from P_i to an abandon pressure of 100 bara. Make a schematic drawing of:
 - a. GOR vs. P
 - b. μ_o vs. P.
 - c. μ_g vs. P.

Give very short comments to the figures.

4. Describe by formula how the Z-factor of the equilibrium gas is calculated based on the "Corresponding State Theorem".

<u>d.</u>

The reservoir fluid is going to be produced through a 3-step separator system, and flash calculations gave the following results:

1. step:	V ₁ =0.5216	$L_1 = 0.4784$
2. step:	V ₂ =0.3254	$L_2=0.6746$
3. step (sc):	V ₃ =0.2517	L ₃ =0.7483

 $(\gamma_g)_{average} = 0.7977$ $M_{STO} = 173.8$ $\rho_{STO} = 828.7 \text{ kg/Sm}^3$

Based <u>on previous data and data from the separator calculations</u>, the following calculations are to be performed:

- 1. Calculate the total GOR, (Sm^3/Sm^3)
- 2. Calculate the GOR for separator 2 (2. step) (Sm^3/Sm^3)
- 3. Calculate the B_{ob} , m^3/Sm^3 . (Answer $B_{ob} = 2.18 m^3/Sm^3$)
- 4. Why is $(B_{ob})_{single flash} = 2.29 > (B_{ob})_{separator} = 2.18$? Give a short comment.

<u>e.</u>

Draw a schematic "block" diagram of a PVT-simulator, and describe shortly what the different "blocks" symbolize/contain

Addition 1. Important formula/correlations in PVT-Analysis.

Temperature:	${}^{o}K = 273.15 + {}^{o}C$ ${}^{o}F = 1.8 \times {}^{o}C + 32$ ${}^{o}R = {}^{o}F + 459.69$			
Pressure:	1atm = 1013.250 mBar = 1.013250 bar = 101.3250 kPa = 0.1013250 MPa = 14.69595 psia psia = 14.69595 + psig 1 atm = 760.002 mmHg at 0 °C			
Density:	$\begin{array}{l} 1 \ g/cm^{3} = 62.43 \ lb/ft^{3} = 350.54 \ lb/bbl \\ 1 \ lb/ft^{3} = 16.0185 \ kg/m^{3} \\ \rho_{w} = 0.999015 \ g/cm^{3} \\ \rho_{w} = 0.9991 \ g/cm^{3} \\ \end{array} \tag{60 °F, 1 atm}$			
Specific density:	For liquids: Determined relative to water at sc. For gases: Determined relative to air at sc. $\gamma_o = \frac{\rho_o}{\rho_w} = \frac{141.5}{131.5 + {}^oAPI}$			
	${}^{o}API = \frac{141.5}{\gamma_{o}} - 131.5$ Cragoe's formula (empirical formula giving molecular weight of hydrocarbons): $M_{o} = \frac{6084}{{}^{o}API - 5.9}$ $\gamma_{g} = \frac{M_{g}}{M_{air}} = \frac{M_{g}}{28.96}$			
Volume:	$ \begin{array}{l} 1 \ bbl = 5.615 \ ft^3 = 0.15898 \ m^3 \\ 1 \ ft^3 = 0.0283 \ m^3 \\ 1 \ US \ Gallon = 3.785 \ litre \\ 1 \ Imp. \ Gallon = 4.546 \ litre \\ Molar \ volume \ of \ gas \ at \ standard \ conditions: \\ V_m = 379.51 \ SCF/lb \ mole \ \ (60 \ ^oF \ and \ 14.69595 \ psia) \\ V_m = 23644.7 \ cm^3/g \ mole = 23.6447 \ m^3/kg \ mole \ \ (15 \ ^oC \ and \ 101.32500 \ kPa) \\ \end{array} $			
Air:	$Z_{air} = 0.9959$ (60 °F, 14.69595 psia) $M_{air} = 28.96$			
Gas constant:	R = 10.732(psia, ft ³ , °R, lb mole) $R = 0.082054$ (atm, litre, °K, g mole) $R = 8.3145$ (kPa, m ³ , °K, kg mole)			