MPE-690 Høst 2011

Problem 1.

<u>a.</u>

Scratch a block diagram to illustrate how the PVT-simulator works. Describe shortly the content of each block.

- Specify the input data for each component, especially the pseudo components.
- Specify the parameters needed for each component, and how they are calculated from the input data for the pseudo components.

<u>b.</u> The SRK-EOS is given by the formula:

$$P = \frac{RT}{V-b} - \frac{a(T)}{V(V+b)}$$

The following parameters are given for component *i*:

$$a_i(T) = a_{ci}\alpha_i(T)$$

$$a_{ci} = 0.42747 R^2 \frac{T_{ci}^2}{P_{ci}}$$

$$b_i = 0.08664 R \frac{T_{ci}}{P_{ci}}$$

- 1. Explain what the two terms in the SKR-EOS represent.
- 2. Explain what the two parameters: a(T) and b, represent.
- 3. Explain by figure and formula, without doing any calculations, how the parameters a_{ci} and b_i can be determined for the pure component *i*.

<u>c.</u>

By putting $V = \frac{ZRT}{P}$, the SRK-EOS can be written as a 3. order equation in Z:

$$Z^{3} - Z^{2} + (A - B - B^{2})Z - AB = 0$$

where:

$$A = \frac{a(T)P}{R^2T^2}$$
 and $B = \frac{bP}{RT}$

For a given value of P and T, a reservoir fluid with composition (mole fraction) z_i is in the 2phase area, i. e. vapor and liquid in equilibrium. The cubic equation in Z is solved to give 2 real roots.

In order to do compositional calculations in the 2-phase region, K_i-values must be known.

Questions:

- 1. What is the physical meaning of the 2 real roots?
- 2. How is the K_i -value defined? What is the K_i -value depending on?
- 3. Describe in detail how the K_i –value is calculated by the means of the SRK-EOS. Use formulas as fare as possible.
- 4. How is the mole fraction of the vapor, V, and liquid phase, L, calculated? Use formulas.
- 5. How is the composition of the vapor, y_i , and liquids, x_i , phase calculated as mole fractions?

Problem 2.

The following reservoir data are given for an oil reservoir:

$$\begin{split} P_i &= 450 \text{ bar} \\ P_b &= 253.3 \text{ bar} \\ T_{res} &= 80 \ ^{o}\text{C} \\ \Phi &= 0.25 \\ S_{wr} &= 0.2 \\ \text{Bulk reservoir volume: } V_{bulk} &= 10^6 \ \text{m}^3 \end{split}$$

a.

A representative reservoir fluid sample is needed for PVT and compositional analysis. What is the most optimum sampling technique in this case? Give a short explanation.

A Constant Mass Expansion (CME) analysis of the reservoir fluid is performed at T_{res} , and the following data are given:

Pressure Bar	Rel. Vol. V/Vb	Compressibility 1/Bar	Y -Factor
500.0	0.9634	1.134E-04	
450.0	0.9693	1.240E-04	
400.0	0.9759	1.364E-04	
350.0	0.9832	1.510E-04	
300.0	0.9914	1.686E-04	
253.3	1.0000	1.884E-04	
250.0	1.0033		4.02
200.0	1.0725		3.68
150.0	1.2087		3.30
100.0	1.5271		2.91
50.0	2.6158		2.52

A separator test was simulated, and the following data were obtained:

Pressure Bar	Temp ⁰C	GOR Sm ³ /Sm ³	Gravity air=1	Oil Dens g/cm ³	FVF m ³ /Sm ³
253.3	80.0			0.732	1.340
100.0	60.0	73.7	0.682	0.796	1.155
30.0	40.0	31.1	0.710	0.834	1.070
1.0	15.0	21.3	1.048	0.865	1.000

<u>b.</u> Verify that P_b is correctly determined from the CME-analysis.

<u>C</u>. Calculate the production of STO (Sm³) and gas (Sm³) by a pressure depletion from P_i to P_b . It is assumed that the HCPV is constant during the pressure depletion, and that the fluid is produced through the given separator system.

<u>d.</u>

Calculate the density of the reservoir fluid at $P_i = 450$ bar, $(\rho_o)_i$ (kg/m³).

Important formula/correlations in PVT-Analysis.

Temperature:	${}^{o}K = 273.15 + {}^{o}C$ ${}^{o}F = 1.8 \times {}^{o}C + 32$ ${}^{o}R = {}^{o}F + 459.69$		
Pressure:	1atm = 1013.250 mBar = 1.013250 bar = 101.3250 kPa = 0.1013250 MPa = 14.69595 psia psia = 14.69595 + psig 1 atm = 760.002 mmHg at 0 °C		
Density:	$\begin{array}{l} 1 \ g/cm^{3} = 62.43 \ lb/ft^{3} = 350.54 \ lb/bbl \\ 1 \ lb/ft^{3} = 16.0185 \ kg/m^{3} \\ \rho_{w} = 0.999015 \ g/cm^{3} \\ \rho_{w} = 0.9991 \ g/cm^{3} \\ \end{array} \tag{60 °F, 1 atm}$		
Specific density:	For liquids: Determined relative to water at sc. For gases: Determined relative to air at sc. $\gamma_o = \frac{\rho_o}{\rho_w} = \frac{141.5}{131.5 + {}^oAPI}$		
	^o API = $\frac{141.5}{\gamma_o} - 131.5$ Cragoe`s formula (empirical formula giving molecular weight of hydrocarbons): $M_o = \frac{6084}{^o API - 5.9}$ $\gamma_g = \frac{M_g}{M_{air}} = \frac{M_g}{28.96}$		
Volume:	1 bbl = 5.615 ft ³ = 0.15898 m ³ 1 ft ³ = 0.0283 m ³ 1 US Gallon = 3.785 litre 1 Imp. Gallon = 4.546 litre Molar volume of gas at standard conditions: $V_m = 379.51$ SCF/lb mole (60 °F and 14.69595 psia) $V_m = 23644.7$ cm ³ /g mole = 23.6447 m ³ /kg mole (15 °C and 101.3250 kPa)		
Air:	$Z_{air} = 0.9959$ (60 °F, 14.69595 psia) $M_{air} = 28.96$		
Gas constant:	R = 10.732(psia, ft ³ , °R, lb mole) $R = 0.082054$ (atm, litre, °K, g mole) $R = 8.3145$ (kPa, m ³ , °K, kg mole)		