H-12

Problem 1

A bottom hole sample of a reservoir fluid undergoes a single flash to standard conditions. Compositional analysis of STO and gas is performed for the following components:

C1, C2, C3, i-C4, n-C4, i-C5, n-C5, C6, C7, C8, C9, C10+

PS! In the following calculations, the components are numbered in the same order, i. e. totally 12 components.

The following data are given: GOR = 5000 Sm³/Sm³ Molefraction of gas: y_i , (i=1-12) Molefraction of STO: x_i , (i=1-12) $M_{STO} = 200 kg/kgmol$ $\gamma_g = 0.70$ $\rho_{STO} = 800 kg/m^3$

It is supposed that the reservoir is "closed", and the following data are given:

 $\begin{array}{ll} T_{res} = 400 \ K \\ P_i = 400 \ bar \\ P_d = 300 \ bar \ at \ T_{res} \\ Bulk \ volume: \\ Porosity: \\ Residual \ water \ saturation: \\ S_{wr} = 0.2 \\ Compressibility \ factors: \end{array}$

• Z_i at P_i and T_{res}

• Z_d at P_d and T_{res}

<u>a.</u>

- 1. Characterize the reservoir fluid by a PT-diagram.
- 2. Give a short description of the experimental <u>principles</u> for determining:
 - a. M_{STO} (use formula)
 - b. ρ_{STO}

<u>b.</u>

The composition of STO is determined by GC-analysis, and the following data are given:

Mass of STO:	10 g	
Mass of standard:	1.0 g	
Area of standard:	As	
Area of comp. C_1 - C_9 :	A _i ,	(i=1-11)
Mole weight of comp. C_1 - C_9 :	M _i ,	(i=1-11)
Density of comp. C_1 - C_9 :	ρ_i , (kg/m ³)	(i=1-11)

- 1. Give a short description of the principles for the GC-analysis regarding:
 - a. Standard used
 - b. Detector (properties)
 - c. How the components are quantified (give formula, response factor, etc.)
- Derive a formula for the weight % of the components C₁-C₉, (w%)_i = f(A_i, A_s); (i=1-11).
- 3. Give a formula for weight% of C_{10+} , $(w\%)_{C10+} = f(A_i, A_s)$.
- 4. Derive a formula for M_{C10^+} , $M_{C10^+} = f((w\%)_{C10^+}, (w\%)_i, M_i)$; (i=1-11)
- 5. Derive a formula for mole fraction of each component, $x_i = f((w\%)_i, M_i)$; (i=1-12).
- 6. Derive a formula for $\rho_{C10+}(kg/m^3)$, $\rho_{C10+} = f(x_i, M_i, \rho_i)$. For x_i and M_i ; (i=1-12), and for ρ_i ; (i=1-11).

<u>c.</u>

The composition of the reservoir fluid, z_i as mole fraction, is determined by a mathematical recombination of the composition of STO and gas. Determine a formula showing $z_i = f(x_i, y_i)$.

d.

Calculate initial oil and gas in place, IOIP and IGIP = $f(Z_i)$ as Sm³.

Addition 1. Important formula/correlations in PVT-Analysis.

Temperature:	${}^{o}K = 273.15 + {}^{o}C$ ${}^{o}F = 1.8 \times {}^{o}C + 32$ ${}^{o}R = {}^{o}F + 459.69$
Pressure:	1atm = 1013.250 mBar = 1.013250 bar = 101.3250 kPa = 0.1013250 MPa = 14.69595 psia psia = 14.69595 + psig 1 atm = 760.002 mmHg at 0 °C
Density:	$\begin{array}{l} 1 \ g/cm^{3} = 62.43 \ lb/ft^{3} = 350.54 \ lb/bbl \\ 1 \ lb/ft^{3} = 16.0185 \ kg/m^{3} \\ \rho_{w} = 0.999015 \ g/cm^{3} \qquad (60 \ ^{o}\text{F}, \ 1 \ atm) \\ \rho_{w} = 0.9991 \ g/cm^{3} \qquad (15 \ ^{o}\text{C}, \ 1 \ atm) \end{array}$
Specific density:	For liquids: Determined relative to water at sc. For gases: Determined relative to air at sc. $\gamma_o = \frac{\rho_o}{\rho_w} = \frac{141.5}{131.5 + {}^oAPI}$
	^o API = $\frac{141.5}{\gamma_o} - 131.5$ Cragoe's formula (empirical formula giving molecular weight of hydrocarbons): $M_o = \frac{6084}{^o API - 5.9}$ $\gamma_g = \frac{M_g}{M_{air}} = \frac{M_g}{28.96}$
Volume:	$ \begin{array}{l} 1 \ bbl = 5.615 \ ft^3 = 0.15898 \ m^3 \\ 1 \ ft^3 = 0.0283 \ m^3 \\ 1 \ US \ Gallon = 3.785 \ litre \\ 1 \ Imp. \ Gallon = 4.546 \ litre \\ Molar \ volume \ of \ gas \ at \ standard \ conditions: \\ V_m = 379.51 \ SCF/lb \ mole \ (60 \ ^{\circ}F \ and \ 14.69595 \ psia) \\ V_m = 23644.7 \ cm^3/g \ mole = 23.6447 \ m^3/kg \ mole \ (15 \ ^{\circ}C \ and \ 101.3250 \ kPa) \\ \end{array} $
Air:	$Z_{air} = 0.9959$ (60 °F, 14.69595 psia) $M_{air} = 28.96$
Gas constant:	R = 10.732(psia, ft ³ , °R, lb mole) $R = 0.082054$ (atm, litre, °K, g mole) $R = 8.3145$ (kPa, m ³ , °K, kg mole)