

University of Stavanger

Faculty of Science and Technology

Date: 31st August 2017.

Exam in: PET 540, Natural Gas Reservoir and Production Engineering.
Duration: 4 hours.
Supporting materials: Use of simple calculator is permitted.
Content: 4 exercises on 4 pages.
Annotation: Answer all questions.
Course Responsible: Yen Adams Sokama-Neuyam.

Exercise 1

- 1. On a P-T diagram, show that the state of equilibrium of a two-phase system will fall on a line.
- 2. Use a diagram to explain the effect of retrograde condensation on well productivity.
- 3. Use a P-T diagram to explain the difference between a wet gas and a gas condensate.

Isothermal gas compressibility, *c* is defined as:

$$c = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

Where V is the volume, p is pressure and T is constant absolute temperature.

4. Show that the compressibility of a real gas, c_{real} and an ideal gas, c_{ideal} can be derived respectively as:

$$c_{real} = \frac{1}{p} - \frac{1}{Z} \left(\frac{\partial Z}{\partial p}\right)_{T}$$
$$c_{ideal} = \frac{1}{p}$$

5. By approximating the derivative $\left(\frac{\partial Z}{\partial p}\right)$ with a central difference, calculate the gas compressibility at 400 bars given the following data.

P(bar)	Ζ
425	1.101
400	1.062
295	0.95

6. Calculate the ideal gas compressibility at 400 bars and evaluate the relative deviation from the real gas compressibility.

The Laplace equation is given by:

$$\nabla \cdot \nabla m = 0$$

Where m is the pseudo-pressure.

1. State the significance of the Laplace equation and outline its underlying assumptions.

Given the Kirchhoff's transformation:

$$m(p) = \frac{1}{(\rho/\mu)_r} \int_{p_r}^p \frac{\rho}{\mu} dp$$

Where ρ is the gas density, μ is the viscosity and p_r is a reference pressure.

2. Show that the pseudo-pressure for an ideal gas, m(p) is given by:

$$m(p) = \frac{1}{2} \left(\frac{p^2}{p_r} - p_r \right)$$

The wet gas formation volume factor, B_g is given by:

$$B_g = \frac{\rho_{sc}}{M_G} \frac{M}{\rho} (1 + R_{MLG})$$

Where ρ_{sc} and ρ are the gas density at standard conditions and reservoir conditions, M and M_G are the average molecular mass of the gas at reservoir and standard conditions and R_{MLG} is the molar condensate-gas-ratio.

3. If $R_{MLG} = R_{MLGi}$, show that the Kirchhoff's transformation can also be written as:

$$m(p) = \left(\mu\beta_g\right)_r \int_{p_r}^{p} \frac{1}{\left(\mu\beta_g\right)} dp$$

Where R_{MLGi} is the initial molar condensate-gas-ratio.

For radial flow, it can be shown that:

$$\frac{dm}{dr} = \frac{1}{r} \frac{m_e - m_w}{\ln\left(\frac{r_e}{r_w}\right)}$$
$$\frac{dp}{dr} = \frac{(\mu\beta)}{(\mu\beta)_r} \frac{dm}{dr}$$

Where m_e and m_w are the pseudo pressures evaluated at the reservoir boundary, r_e and the well, r_w respectively.

4. Use Darcy's law to show that the steady-state radial flow equation can be derived as:

$$m_e - m_w = \frac{q_{sc}(\mu\beta)_r}{2\pi kh} \ln\left(\frac{r_e}{r_w}\right)$$

< a>

Where kh is the permeability-thickness ratio.

For constant diffusivity coefficient, D_Q , the radial heat flow in a well can be expressed in cylindrical coordinates as:

$$\frac{1}{D_Q}\frac{\partial T}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right)$$

Where $\frac{\partial T}{\partial t}$ is the rate of change of temperature and $\frac{\partial T}{\partial r}$ is the temperature gradient. The equation is solved by splitting the solution into the uploading period, the transient period and the steady-state period.

- 1. Explain the behaviour of the equation during the uploading and the steady-state periods.
- 2. Show that the general solution of the steady-state radial heat flow can be derived as:

$$T = a\ln(r) + b$$

Where *a* and *b* are integration constants.

Given Fourier's law:

$$J_Q = -\kappa_T \frac{\partial T}{\partial r}$$

Where J_Q is the specific heat flow and κ_T is the thermal conductivity of the material.

3. Show that, the integration constant, a, can be expressed as:

$$a = -\frac{r}{\kappa_T} U_Q (T - T_s)$$

Where $J_Q = U_Q(T - T_s)$, $(T - T_s)$ is the difference between the well temperature and the reservoir temperature and U_Q is the heat transfer coefficient.

4. With appropriate well and reservoir boundary conditions, show that the temperature difference between the well and the formation is given by:

$$T - T_s = a \ln\left(\frac{r}{r_s}\right)$$

1. Explain mist flow.

The density of a water-gas mixture can be expressed as:

$$\rho_m = \rho_g \left(1 - \frac{q_w}{q_w + q_g} + \frac{\rho_w}{\rho_g} \frac{q_w}{q_w + q_g} \right)$$

Where q_w and q_g are the volumetric flow rate of the aqueous phase and the gas mixture respectively.

2. By making justifiable assumptions, show that ρ_m can also be expressed as

$$\rho_m = \rho_g F_w$$

Where $F_w = 1 + \frac{w_w}{w_g}$ is the water correction factor and w_w and w_g are the water and gas phase mass flow rate respectively.

- 3. Explain the difference between water influx and water channelling.
- 4. Construct a uniform inflow performance curve for varying reservoir pressure.

Well deliverability can be expressed as:

$$\bar{p} - p_{wh} = \Delta p_{inflow} + \Delta p_{tubing}$$

Where Δp_{inflow} and Δp_{tubing} are the inflow and tubing performance respectively and \bar{p} and p_{wh} are the average reservoir pressure and the wellhead pressure respectively.

- 5. Given that $p_{bh} \sim p_{wh} e^{N_{gp}}$, construct a typical well deliverability curve and show the maximum well deliverability.
- 6. With the aid of a deliverability curve, explain the effect of compression on gas delivery.

Best of Luck - Yen.

- As the neger vour pressure drops from A to D, tiquid condensate drops noto the pores in the wellbone vicinity. - Pressure drop in the wellbone increases sognificantly which impairs permeability to gas and reduces well productivity.

that : Criven $c = -\frac{1}{\sqrt{\frac{\partial V}{\partial \rho}}}$ The real gas equation: $PV = ZnR^{1}$

5. For central difference approximation

$$\begin{pmatrix} \frac{\partial Z}{\partial P} \end{pmatrix}_{P=P_{i}} = \frac{Z(P_{i+1}) - Z(P_{i-1})}{P_{i+1} - P_{i-1}}$$

$$C_{400} = \frac{1}{400} - \frac{1}{1.062} \left(\frac{1.101 - 0.95}{425 - 295} \right)$$

$$= 0.001406$$

¥

6. For ideal gas:

$$C_{400} = \frac{1}{400} = 0.0025$$

Deviation:
$$\Delta C = 0.0025 - 0.001406$$

 $C = 0.001406$
 $= 77.8126$

Exercise 2

1. The Laplace Equation describes incompressible steady-state flow of liquids in porous media. other assumptions

2. For ideal gas equation, gas density
Gen be derived as

$$p = \frac{Mg}{nRT} p$$
The pseudo-presence given by

$$m(p) = \frac{1}{(P/u)} \int_{P} \frac{p}{u} dp$$

$$m(p) = \frac{nRT}{Mg} \left(\frac{M}{P}\right)_{r} \int_{Pr} \frac{mg}{nRT} \frac{p}{u} dp$$

$$m(p) = \left(\frac{M}{Mg}\right)_{r} \int_{Pr} \frac{mg}{nRT} \frac{p}{u} dp$$

if M is admined Constant for PE[Pr, P]

$$m(p) = \mathcal{M} \cdot \frac{1}{P_r} \cdot \frac{1}{\mathcal{M}} \int_{P_r}^{P_r} dp$$

$$= \frac{1}{P_r} \cdot \frac{P^2}{2} \Big|_{P_r}^{P} = \frac{1}{P_r} \left(\frac{P^2}{2} - \frac{P_r^2}{2} \right)$$

$$m(p) = \frac{1}{2} \left(\frac{P^2}{P_r} - P_r \right)$$

(3) Given that

$$B_{g} = \frac{P_{sc}}{M_{G}} - \frac{M}{P} (1 + R_{MLG})$$
for $R_{MLG} = R_{MLG}i$

$$M_{G} = M (1 + R_{MLG})$$

$$\Rightarrow B_{S} = \frac{P_{sc}}{P} \Rightarrow \frac{f}{M} = \begin{pmatrix} P_{sc} \\ M_{B_{g}} \end{pmatrix}$$
Substituting two the Kiv cchoffed transformation

$$m(p) = \frac{1}{(P_{sc}/M_{B})} \int_{P} \frac{P_{sc}}{M_{B_{g}}} dp$$

$$m(p) = (M_{B_{g}})_{r} \int_{P_{r}} \frac{1}{(M_{B_{g}})} dp$$

$$\frac{P_{sc}}{M_{B_{g}}} \int_{P} \frac{P_{sc}}{M_{B_{g}}} dp$$

$$\frac{dm}{dr} = \frac{1}{r} \frac{m_e - m_w}{\ln(r_e/r_w)}$$

$$\frac{dp}{dr} = \frac{(uB)}{(uB)_e} \frac{dm}{dr}$$

$$q_{sc} = \frac{q}{B} = \frac{2\pi rhK}{\mu B} \frac{dp}{dr}$$

Reamonpy gives
Fre me-mw =
$$\frac{2\pi(\mu B)r}{2\pi \mu h} \ln(\frac{re}{sw})$$

Exercise 3 D upbading prod steady-state period theat heat shood - No temperature gradient yet. - temperature product 5 established. - upbading of heat to the surroundings. - heat begins to flow within the flutch a throw the centre of the well. 2 Griven the general equation: $\frac{1}{D_0}\frac{\partial T}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right)$ under steady-state conditions $\frac{\partial I}{\partial t} = 0$ $\frac{\partial}{\partial r} \left(r \frac{\partial \overline{r}}{\partial r} \right) = 0$ $r\frac{\partial T}{\partial r} = q$ a = constant. $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

$$\int \partial T = \alpha \int \frac{\partial r}{r}$$

$$T = \alpha \ln(r) + b \qquad b = integration$$

(3) Griven

$$J_{q} = -K_{T} \frac{\partial T}{\partial r}$$
Deferentiating the general equation

$$\frac{\partial T}{\partial r} = \frac{q}{r}$$
Combing the two equations builds

$$\frac{\partial T}{\partial r} = -\frac{J_{q}}{K_{T}}$$
and $\frac{\partial T}{\partial r} = -\frac{q}{r}$ yields

$$q = -r \frac{J_{q}}{K_{T}}$$
But $J_{q} = U_{q} (T-T_{s})$ which gives

$$q = -\frac{r}{K_{T}} U_{q} (T-T_{s})$$

Exercise 4

(1) Mist flow: small tiquids, homogeneously dispersed in the gas which is plouing at a very high rate.

Given that $P_{m} = P_{g} \left(1 - \frac{7\omega}{7\omega + f_{g}} + \frac{f_{w}}{f_{g}} - \frac{9\omega}{7\omega + f_{g}} \right)$ For quo << q $\left(1-\frac{4w}{4w+4g}\right)^{2}$, $\frac{2w}{4w+4g}^{2}$, $\frac{2}{4w}$ $P_{m} = P_{g} \left(1 + \frac{P_{w} + F_{w}}{P_{g} + q} \right)$ mass flow rate w = pq $f_{\rm m} = f_{\rm g} \left(1 + \frac{w_{\rm w}}{w_{\rm g}} \right)$ $s f_m = f_g F_w$ for $\overline{T}_w = 1 + \frac{W_w}{W_g}$

Water Channelling: When water by following neservoir heterogeneitiges, En flows divertly towards the well and cause drastic increase in the water cut.

- Compression takes production along Curve D, allouing further production down to f.

*