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Exercise 1

1. OnaP-T diagram, show that the state of equilibrium of a two-phase system will fall on a line.
2. Use a diagram to explain the effect of retrograde condensation on well productivity.
3. Use a P-T diagram to explain the difference between a wet gas and a gas condensate.

Isothermal gas compressibility, c is defined as:

_ 1<6V)
€= V\dp/,

Where V is the volume, p is pressure and T is constant absolute temperature.

4. Show that the compressibility of a real gas, c,.q and an ideal gas, c;jzeq; Can be derived
respectively as:

1
Cideal =
p

5. By approximating the derivative (Z—Z) with a central difference, calculate the gas compressibility

at 400 bars given the following data.

P(bar) | Z
425 1.101
400 1.062
295 0.95

6. Calculate the ideal gas compressibility at 400 bars and evaluate the relative deviation from the
real gas compressibility.



Exercise 2

The Laplace equation is given by:
V.Vm =20
Where m is the pseudo-pressure.

1. State the significance of the Laplace equation and outline its underlying assumptions.

Given the Kirchhoff’s transformation:

m(p) =

1
J, i
(/W )y, 1
Where p is the gas density, u is the viscosity and p,. is a reference pressure.

2. Show that the pseudo-pressure for an ideal gas, m(p) is given by:

1 2
m) = 5(2—— pr)

T

The wet gas formation volume factor, B, is given by:

p
By = ML:_ (1 + Rumre)

Where p,. and p are the gas density at standard conditions and reservoir conditions, M and M,; are the
average molecular mass of the gas at reservoir and standard conditions and Ry, is the molar
condensate-gas-ratio.

3. If Ry = Rygi, sShow that the Kirchhoff’s transformation can also be written as:

m() = (uBy), B ﬁ)

Where Ry, ¢; 1S the initial molar condensate-gas-ratio.

For radial flow, it can be shown that:

dm 1m,—m,

()
dp _ (uB) dm
dr— (up), dr

Where m, and m,, are the pseudo pressures evaluated at the reservoir boundary, 7, and the well, r;,,
respectively.

4. Use Darcy’s law to show that the steady-state radial flow equation can be derived as:

Qs Wh)r (r_e)

Me = Mw =" kh T

Where kh is the permeability-thickness ratio.



Exercise 3

For constant diffusivity coefficient, D, the radial heat flow in a well can be expressed in cylindrical
coordinates as:

1 6T_18< GT)
DQat_rar rar

Where % is the rate of change of temperature and Z—: is the temperature gradient. The equation is solved

by splitting the solution into the uploading period, the transient period and the steady-state period.

1. Explain the behaviour of the equation during the uploading and the steady-state periods.
2. Show that the general solution of the steady-state radial heat flow can be derived as:

T=aln(r)+b
Where a and b are integration constants.
Given Fourier’s law:

B aT

Where ], is the specific heat flow and x is the thermal conductivity of the material.

3. Show that, the integration constant, a, can be expressed as:
r
=——VUo(T —T
a Ky Q( s)

Where Jo = Up(T —Ty), (T —Ts) is the difference between the well temperature and the reservoir
temperature and U,, is the heat transfer coefficient.

4. With appropriate well and reservoir boundary conditions, show that the temperature difference
between the well and the formation is given by:

r
T—Ts =aln<—)

Ts



Exercise 4

1. Explain mist flow.

The density of a water-gas mixture can be expressed as:

qw Pw  Qw
Pm=pg|{l——Frt ="
dw +dg  Pgqw t g
Where q,, and q4 are the volumetric flow rate of the aqueous phase and the gas mixture respectively.
2. By making justifiable assumptions, show that p,,, can also be expressed as
Pm = PgFw
Where F, =1+ % is the water correction factor and w,, and w,, are the water and gas phase mass
g

flow rate respectively.

3. Explain the difference between water influx and water channelling.
4. Construct a uniform inflow performance curve for varying reservoir pressure.

Well deliverability can be expressed as:
P —Pwh = Apinflow + Apt&ubing

Where Apinfiow aNd Apgyping are the inflow and tubing performance respectively and p and p,,, are
the average reservoir pressure and the wellhead pressure respectively.

5. Given that p, ~p.re™o», construct a typical well deliverability curve and show the maximum
well deliverability.
6. With the aid of a deliverability curve, explain the effect of compression on gas delivery.

Best of Luck — Yen.
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