
Short solutions for exam in PET 565 spring 2016.

(a) A direct computation of derivatives ut and ux gives

ut = u′0(·)
∂

∂t
[x− f ′(u(x, t))t] = −u′0(·)[tf ′′(u(x, t))ut + f ′(u(x, t))]

and

ux = u′0(·)
∂

∂x
[x− f ′(u(x, t))t] = u′0(·)[1− tf ′′(u(x, t))ux],

that is,

f ′(u)ux = u′0(·)[f ′(u)− tf ′′(u)f(u)x].

Then it follows by adding

[ut + f(u)x] = −u′0(·)tf ′′(u)[ut + f(u)x].

Hence,

[ut + f(u)x] · [1 + u′0(·)tf ′′(u)] = 0.

(b) By differentiating (***) with respect to x we get

ux = u′0(x0)[1− f ′′(u(x, t))uxt], u(x, t) = u0(x0),

from which we find

ux =
u′0(x0)

1 + u′0(x0)f
′′(u0(x0))t

,

where x0 = x− f ′(u0(x0))t and u(x, t) = u0(x0).

Breaking time: The time when ux blows up.
Characteristics will meet at that time possibly carrying different constant states, i.e.,
formation of jumps in the solution.

(c) The rectangle [x1, x1 +∆x]× [t1, t1 +∆t] is split by the shock into two triangles and
the value of u is roughly constant in each. The integral form of the conservation law
is obtained by integrating ut + f(u)x = 0 over [x1, x1 +∆x]× [t1, t1 +∆t]:

∫ x1+∆x

x1

u(x, t1+∆t) dx−
∫ x1+∆x

x1

u(x, t1) dx =

∫ t1+∆t

t1

f(u(x1, t)) dt−
∫ t1+∆t

t1

f(u(x1+∆x, t)) dt.

Using that u is essentially constant along each edge of the rectangle (either ul or ur)
we get

∆xur −∆xul = ∆tf(ul)−∆tf(ur) +O(∆t2),

where O(∆t2) accounts for the variation in u. That is (for the case indicated in the
figure where velocity of the jump is negative),

s = −∆x

∆t
=

f(ul)− f(ur)

ul − ur
+O(∆t).

Letting ∆t → 0.
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(d) At x = 0 we have a rarefaction wave, and at x = 2 we have a shock wave. The
combined solution then reads

u(x, t) =


0, x ≤ 0;
3
2
x
t , 0 < x < 4

3 t;
2, 4

3 t ≤ x ≤ 2
3 t+ 2;

0, x > 2
3 t+ 2;

After a time TC , the rarefaction waves catches up to the shock. This must correspond
to 4

3TC = 2
3TC + 2, giving TC = 3.

(e) We want to compute the new shock (ul(t), 0) and its position xs(t) for times t > TC .
The Rankine-Hugoniot condition gives that s = 1

3ul(t).

Furthermore, we expoit that s(t) = d
dtxs(t) and xs(t) = f ′(ul(t))t = 2

3ul(t)t. This

then leads to an equation of the form u′l(t) = − 1
2tul(t).

Rewriting and then integrating over [TC , t] and [2, ul(t)] gives us the equation

ln(TC
t )

1
2 = ln(ul

2 ).

We then find that ul(t) = 2(3t )
1
2 .

We also note that xs(t) =
2
3ul(t)t = 4(3)−

1
2 t

1
2 .

The solution for t >= TC then reads

u(x, t) =


0, x ≤ 0;
3
2
x
t , 0 < x < xs(t);

0, x ≥ xs(t);



Exercise 2 

 

Fig. 1. Fractional flow curves vs. normalized water saturation for CASE 1 and CASE 2 to the left and 
corresponding df/dS curves to the right. 

 

The Buckley-Leverett (B-L) equation for water-oil transport (horizontal flow) is given by: 

0
x

)S(f
t
S

=
∂

∂
+

∂
∂

  [ ]1,0x∈   (*) 

where S is normalized water saturation, t is dimensionless time and x is normalized length. 

The equation (*) can further be developed to (**) below. 

0
x
S)S('f

t
S

=
∂
∂

+
∂
∂

 (**) 

a) Show how (**) can be derived from (*). What is the quantify f’(S) representing? 
b) Sketch the general steps involved for determining the water saturation shock front height and 

the water saturation profile behind the front (S > Sf) for a system with a given fractional flow 
curve. 

c) Determine the time when water breakthrough occurs for CASE 1 (called TB1) and CASE 2 (called 
TB2)? 

d) Let water be injected into two different core samples having fractional flow curve characteristics 
corresponding to CASE 1 and CASE 2 above. What is the expected water-cut exactly at the time 
when water is breaking through at the outlet of the core sample for CASE 1 and CASE 2? We 
assume that water-cut is equal to water fractional flow value meaning that we assume Bw = Bo 
which should be a reasonable assumption in a laboratory test using dead oil and low pressures 
during in the experiments. 



e) Calculate oil recovery for both cases at the time when water breakthrough occurs for CASE 1 i.e., 
at TB1. 

 

Solution 

a) 0
x

)S(f
t
S

=
∂

∂
+

∂
∂  

Using chain rule: 0
x
S)S('f

t
S

x
S

dS
)S(df

t
S

x
)S(f

t
S

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
∂

∂
+

∂
∂

 

f’(S) represents the dimensionless velocity for a certain water saturation S.  

b) 1) Determine the front saturation height. It can be done graphically as shown in the figure below. 

 
 
Draw the fractional flow curve and the tangent line passing through the origin. The front height 
saturation Sf corresponds to the tangent point saturation, 0.45 in the figure. 

1) The speed of the saturation front is equal to the steepness of the tangent line used to 
determine front saturation, i.e. f’(Sf). Hence, after time T the front has moved a distance 
f’(Sf)T. 

2) The position of saturations S > Sf after time T is given by f '(S)T. 
 

c) At water breakthrough: f’(Sf)·Tb = 1, f’(Sf) is shock front velocity and Tb dimensionless 
breakthrough time. 
 



 
 

From figure above: 
CASE 1 has shock front saturation height ≈ 0.57 corresponding to a velocity of f’(Sf) ≈ 1.4. 
CASE 2 has shock front saturation height ≈ 0.22 corresponding to a velocity of f’(Sf) ≈ 2.6. 
 
f’(Sf)·TB1 = 1 → TB1 = 1/1.4 = 0.71 
f’(Sf)·TB2 = 1 → TB2 = 1/2.6 = 0.38 
 

d) Water-cut at breakthrough corresponds to the fractional flow of water at the shock front 
saturation Sf.  
Hence, WCT (CASE 1) ≈ 0.78 and WCT (CASE 2) ≈ 0.61 

e) Oil recovery up to breakthrough is given by dimensionless time TB. CASE 1 has the most stable 
displacement process with water breaking through at TB1 = 0.71. RF CASE 1 at breakthrough is 
therefore 0.71. The water front for CASE 2 broke through at TB2 = 0.38.  
The water saturation at the outlet of the core for CASE 2 at time 0.71 is called S*. 
f’(S*)·0.71 = 1 → f’(S*) = 1/0.71 ≈ 1.41. From the derivative plot it can be found that df/dS = 1.41 
corresponds to S* ≈ 0.3. Corresponding f(S*) is then ≈ 0.78. Hence, recovery for CASE 2 at TB1 = 
0.71 is: 
 
R = S* + T·(1 – f(S*)) = 0.3 + 0.71(1 – 0.78) = 0.46 

 

 
 
 
 
 
        



Exercise 3. A brine contains 0.15 mol/L Na2SO4 consisting of the ions Na+ and SO2−
4 .

a) Calculate the ionic strength.

In the following we consider dissolution of calcite CaCO3 in this brine, according to

CaCO3 
 Ca2+ +CO2−
3 , Kcalcite = 10−8.5 (1)

The dissolved species are assumed not to affect the ionic strength. The carbon content is assumed
to be mainly in form of CO2−

3 .

b) Calculate activity coefficients of Na+, Ca2+, CO2−
3 and SO2−

4 .
c) Without accounting for complexes, how many moles CaCO3 per L can be dissolved in this

brine?

Answer.

a)

I = 0.5(2 · 0.15 · 12 + 0.15 · (−2)2) = 0.5(0.3 + 0.6) = 0.45 (2)

b) Using Davies formula we obtain:

log10 γi = −0.51Z2
i

( √
0.45

1 +
√
0.45− 0.3 · 0.45

)
= −0.136Z2

i (3)

γna = 10−0.136 = 0.73 (4)

γca = γco3 = γso4 = 10−0.136·4 = 10−0.136·4 = 0.28 (5)

c) We have that mcalcite = mca = mco3 = m

K = γ2m2 (6)

m =
√
K/γ =

√
10−8.5/0.28 = 0.20 mmol/L (7)

Exercise 4. This is a continuation of Task 1, considering how the formation of complexes influ-
ences the solubility of calcite in the given brine. The complex CaSO0

4 can form according to

CaSO0
4 
 Ca2+ + SO2−

4 , Kcaso = 10−2.5 (8)

a) Write down the following 5 equations:
– Equilibrium of the aqueous complex reaction (8) according to the law of mass action
– 2 mass balance equations for Ca2+ and SO2−

4 species
– Equilibrium of the calcite dissolution reaction (1)
– The relation between the concentrations of CO2−

3 and Ca2+

Specify which variables are unknown.

PS: Express the equations using total concentrations Ci, concentrations of free species mi and
concentrations of complexes nij . You do NOT have to solve the equations.

Answer.

a)

mCa2+mSO2−
4

nCaSO0
4

γCa2+γSO2−
4

γCaSO0
4

= Kcaso (9)

CCa2+ = mCa2+ + nCaSO0
4

(10)

CSO2−
4

= mSO2−
4

+ nCaSO0
4

(11)

mCa2+mCO2−
3
γCa2+γCO2−

3
= Kcalcite (12)

mCO2−
3

= CCa2+ (13)

Unknowns: mCa2+ ,mSO2−
4
, nCaSO0

4
, CCa2+ ,mCO2−

3
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Exercise 5. A core contains c=0 mol/L of a species initially and is then injected with a brine con-
taining c=1 mol/L. The species adsorbs according to an isotherm q(c) = c3. Assume a retardation
model can be applied.

a) Sketch the concentration profile along the core after flooding 1 pore volume.
b) How many pore volumes must be flooded before the core stops adsorbing more species?
c) After the core is flooded sufficiently with the 1 mol/L brine, the core is cleaned by flooding

a brine with c = 0 mol/L. How many pore volumes of the new brine must be injected to
remove all the species from the core?

Answer.
c dq/dc = 3c2 R = 1 + dq/dc xc/xw = 1/R
0 0 1 1
0.5 0.75 1.75 0.57
1 3 4 0.25

a) See table.
b) The slowest concentration must have reached the outlet. R is largest for the highest

concentration, c = 1. xc=1 = 1 when xw/Rc=1 = 1 which is xw = Rc=1 = 4, i.e. 4 PV.

c) The sorbant is displaced in a frontlike manner where Rf = 1 + 13−03

1−0 = 2. The front has
reached the outlet after 2 PV.

Formulas

I = 1/2
∑
i

miZ
2
i (14)

log10 γi = −0.51Z2
i

( √
I

1 +
√
I − 0.3I

)
(15)

Rc = 1 +
dq

dc
, (broadening front) (16)

Rf = 1 +
∆q

∆c
, (sharpening front) (17)


