

On 9th April we will have a team session 14:30 – 15:00 where each student will come to present their answers to one of the questions, and we will discuss the solutions together.

Calculate the standard entropy change for the following chemical reactions.

1. $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$, If $S^o(C_3H_8) = 270 \text{ J/mol·K}$, $S^o(O_2) = 205 \text{ J/mol·K}$, $S^o(CO_2) = 214 \text{ J/mol·K}$, $S^o(H_2O) = 189 \text{ J/mol·K}$

```
2. CO(g) + 2H_2(g) \rightarrow CH_3OH(g)

if S^{\circ}(CO) = 198 \text{ J/mol}\cdot\text{K},

S^{\circ}(H_2) = 131 \text{ J/mol}\cdot\text{K},

S^{\circ}(CH_3OH) = 240 \text{ J/mol}\cdot\text{K}
```


Calculate ΔG° at 298 K for the reaction in

$$\rm C_{3}H_{8(I)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_{2}O_{(I)}$$

If $\Delta G^{\circ}(C_3H_8) = -23.56 \text{ kJ/mol}$

 $\Delta G^{\rm o}(\rm CO_2) = -394.4 \ kJ/mol$

 $\Delta G^{\rm o}({\rm H_2O}) = -237.2 \text{ kJ/mol}$

Is the reaction spontaneous at 298 K? Calculate the equilibrium constant at 298 K for this reaction.

For the reaction: $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$, $\Delta H^\circ = 206 \text{ kJ/mol} \text{ and } \Delta S^\circ = 216 \text{ J/mol} \cdot \text{K}$

Is the reaction spontaneous at 298 K? at 1200 K?

What is the transition temperature for this reaction from nonspontaneous to spontaneous?

Consider the following system at equilibrium at 25 °C.

 $\mathsf{PCl}_3(g) + \mathsf{Cl}_2(g) \leftrightarrow \mathsf{PCl}_5(g) \quad \Delta G^\circ = -92.50 \text{ kJ}$

What will happen to the ratio of partial pressure of PCI_5 to partial pressure of PCI_3 if the temperature is raised? Explain.

 $\begin{array}{ll} \text{If} & 2\text{Fe}(s) + 3/2 \text{ O}_2(g) \rightarrow \text{Fe}_2\text{O}_3(s);\\ \Delta G^\circ = -740 \text{ kJ}\\ \text{and} & 2\text{AI}(s) + 3/2 \text{ O}_2(g) \rightarrow \text{AI}_2\text{O}_3(s);\\ \Delta G^\circ = -1582 \text{ kJ} \end{array}$

Calculate ΔG° for the reaction:

 $Fe_2O_3(s) + 2AI(s) \rightarrow 2Fe(s) + AI_2O_3(s)$

- Find the activation energy (in kJ/mol) of the reaction if the rate constant at 600 K is 3.4 M⁻¹s⁻¹ and 31.0 at 750 K.
- Find the new temperature if the rate constant at that temperature is 15 M⁻¹s⁻¹ while at temperature 389 K the rate constant is 7 M⁻¹s¹, the activation energy is 600 kJ/mol.

What is the equilibrium constant for the following reaction?

 $2 \text{ NO}_2(g) \leftrightarrow 2 \text{ N}_2\text{O}_4(g)$

The concentrations at equilibrium are $[NO_2] = 0.025$ moles/liter; $[N_2O_4] = 0.0869$ moles/liter. What is the equilibrium concentration for NO₂ if the concentration of N₂O₄ is 0.12 moles/liter?

Consider the reaction: $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$,

- 1. Write the expression of the equilibrium constant K_p
- 2. What is the value of ΔG at standard conditions
- 3. What is the value of ΔG at 250 °C and P_{N2} = 5.0 atm, P_{H2} = 15 atm, and P_{NH3} = 5.0 atm

 ΔG° at 25 °C is -33 kJ/mol, at 250 °C is 12 kJ/mol.

For a gas phase reaction, $A(g) + 2B(g) \leftrightarrow C(g) + D(g)$

Explain what will happen to the equilibrium when

- 1. Adding C to the reaction system
- 2. When the volume of the mixture is reduced
- 3. Adding an inert gas into the gas-phase equilibrium at constant volume

Although the equilibrium constant, K_{p} , for the reaction

 $\mathsf{2SO}_2 + \mathsf{O}_2 \leftrightarrow \mathsf{2SO}_3$

is 4×10^{22} kPa⁻¹ at 298 K, SO₂ does not react readily with oxygen at this temperature. Explain why this reaction does not occur readily.