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E X E R C I S E S 10.2
1. Let A = (−1, 2), B = (2, 0), C = (1,−3), D = (0, 4).

Express each of the following vectors as a linear combination
of the standard basis vectors i and j in R

2.

(a)
−→
AB, (b)

−→
B A, (c)

−→
AC , (d)

−→
B D, (e)

−→
D A,

(f)
−→
AB −−→BC , (g)

−→
AC − 2

−→
AB + 3

−→
C D, and

(h)
−→
AB +−→AC +−→AD

3
.

In Exercises 2–3, calculate the following for the given vectors u
and v:

(a) u+ v, u− v, 2u− 3v,

(b) the lengths |u| and |v|,
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(c) unit vectors û and v̂ in the directions of u and v,
respectively,

(d) the dot product u • v,

(e) the angle between u and v,

(f) the scalar projection of u in the direction of v,

(g) the vector projection of v along u.

2. u = i− j and v = j+ 2k

3. u = 3i+ 4j− 5k and v = 3i− 4j− 5k

4. Use vectors to show that the triangle with vertices (−1, 1),
(2, 5), and (10,−1) is right-angled.

In Exercises 5–8, prove the stated geometric result using vectors.

5.A The line segment joining the midpoints of two sides of a
triangle is parallel to and half as long as the third side.

6.A If P , Q, R, and S are midpoints of sides AB, BC , C D, and
D A, respectively, of quadrilateral ABC D, then P Q RS is a
parallelogram.

7.I The diagonals of any parallelogram bisect each other.

8.I The medians of any triangle meet in a common point. (A
median is a line joining one vertex to the midpoint of the
opposite side. The common point is the centroid of the
triangle.)

9. A weather vane mounted on the top of a car moving due
north at 50 km/h indicates that the wind is coming from the
west. When the car doubles its speed, the weather vane
indicates that the wind is coming from the northwest. From
what direction is the wind coming, and what is its speed?

10. A straight river 500 m wide flows due east at a constant speed
of 3 km/h. If you can row your boat at a speed of 5 km/h in
still water, in what direction should you head if you wish to
row from point A on the south shore to point B on the north
shore directly north of A? How long will the trip take?

11.I In what direction should you head to cross the river in
Exercise 10 if you can only row at 2 km/h, and you wish to
row from A to point C on the north shore, k km downstream
from B? For what values of k is the trip not possible?

12. A certain aircraft flies with an airspeed of 750 km/h. In what
direction should it head in order to make progress in a true
easterly direction if the wind is from the northeast at
100 km/h? How long will it take to complete a trip to a city
1,500 km from its starting point?

13. For what value of t is the vector 2t i+ 4j− (10+ t)k
perpendicular to the vector i+ tj+ k?

14. Find the angle between a diagonal of a cube and one of the
edges of the cube.

15. Find the angle between a diagonal of a cube and a diagonal
of one of the faces of the cube. Give all possible answers.

16.A (Direction cosines) If a vector u in R
3 makes angles α, β,

and γ with the coordinate axes, show that

û = cosαi+ cosβj+ cos γk

is a unit vector in the direction of u, so
cos2 α + cos2 β + cos2 γ = 1. The numbers cosα, cosβ,
and cos γ are called the direction cosines of u.

17. Find a unit vector that makes equal angles with the three
coordinate axes.

18. Find the three angles of the triangle with vertices (1, 0, 0),
(0, 2, 0), and (0, 0, 3).

19.A If r1 and r2 are the position vectors of two points, P1 and P2,
and λ is a real number, show that

r = (1− λ)r1 + λr2

is the position vector of a point P on the straight line joining
P1 and P2. Where is P if λ = 1/2? if λ = 2/3? if λ = −1?
if λ = 2?

20. Let a be a nonzero vector. Describe the set of all points in
3-space whose position vectors r satisfy a • r = 0.

21. Let a be a nonzero vector, and let b be any real number.
Describe the set of all points in 3-space whose position
vectors r satisfy a • r = b.

In Exercises 22–24, u = 2i+ j− 2k, v = i+ 2j− 2k, and
w = 2i− 2j+ k.

22. Find two unit vectors each of which is perpendicular to both
u and v.

23. Find a vector x satisfying the system of equations x • u = 9,
x • v = 4, x • w = 6.

24. Find two unit vectors each of which makes equal angles with
u, v, and w.

25. Find a unit vector that bisects the angle between any two
nonzero vectors u and v.

26. Given two nonparallel vectors u and v, describe the set of all
points whose position vectors r are of the form r = λu+μv,
where λ and μ are arbitrary real numbers.

27.A (The triangle inequality) Let u and v be two vectors.

(a) Show that |u+ v|2 = |u|2 + 2u • v+ |v|2.

(b) Show that u • v ≤ |u||v|.
(c) Deduce from (a) and (b) that |u+ v| ≤ |u| + |v|.

28. (a) Why is the inequality in Exercise 27(c) called a triangle
inequality?

(b) What conditions on u and v imply that
|u+ v| = |u| + |v|?

29. (Orthonormal bases) Let u = 3
5 i+ 4

5 j, v = 4
5 i− 3

5 j, and
w = k.

(a) Show that |u| = |v| = |w| = 1 and
u • v = u • w = v • w = 0. The vectors u, v, and w are
mutually perpendicular unit vectors and as such are said
to constitute an orthonormal basis for R3.

(b) If r = x i+ yj+ zk, show by direct calculation that

r = (r • u)u+ (r • v)v+ (r • w)w.

30. Show that if u, v, and w are any three mutually
perpendicular unit vectors in R

3 and r = au+ bv+ cw, then
a = r • u, b = r • v, and c = r • w.

31. (Resolving a vector in perpendicular directions) If a
is a nonzero vector and w is any vector, find vectors u and v
such that w = u+ v, u is parallel to a, and v is perpendicular
to a.
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32.A (Expressing a vector as a linear combination of two
other vectors with which it is coplanar) Suppose that u,
v, and r are position vectors of points U , V , and P ,
respectively, that u is not parallel to v, and that P lies in the
plane containing the origin, U , and V . Show that there exist
numbers λ and μ such that r = λu+μv. Hint: Resolve both
v and r as sums of vectors parallel and perpendicular to u as
suggested in Exercise 31.

33.I Given constants r , s, and t , with r 
= 0 and s 
= 0, and given a
vector a satisfying |a|2 > 4rst , solve the system of equations{ rx+ sy = a

x • y = t

for the unknown vectors x and y.

Hanging cables
34. (A suspension bridge) If a hanging cable is supporting

weight with constant horizontal line density (so that the

weight supported by the arc L P in Figure 10.19 is δgx rather
than δgs, show that the cable assumes the shape of a
parabola rather than a catenary. Such is likely to be the case
for the cables of a suspension bridge.

C 35. At a point P , 10 m away horizontally from its lowest point
L , a cable makes an angle 55◦ with the horizontal. Find the
length of the cable between L and P .

36. Calculate the length s of the arc L P of the hanging cable in
Figure 10.19 using the equation y = (1/a) cosh(ax)
obtained for the cable. Hence, verify that the magnitude
T = |T| of the tension in the cable at any point P = (x, y) is
T = δgy.

C 37. A cable 100 m long hangs between two towers 90 m apart so
that its ends are attached at the same height on the two
towers. How far below that height is the lowest point on the
cable?
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E X E R C I S E S 10.3
1. Calculate u × v if u = i− 2j+ 3k and v = 3i+ j− 4k.

2. Calculate u × v if u = j+ 2k and v = −i− j+ k.

3. Find the area of the triangle with vertices (1, 2, 0), (1, 0, 2),
and (0, 3, 1).

4. Find a unit vector perpendicular to the plane containing the
points (a, 0, 0), (0, b, 0), and (0, 0, c). What is the area of
the triangle with these vertices?

5. Find a unit vector perpendicular to the vectors i+ j and
j+ 2k.

6. Find a unit vector with positive k component that is
perpendicular to both 2i− j− 2k and 2i− 3j+ k.

Verify the identities in Exercises 7–11, either by using the
definition of cross product or the properties of determinants.

7. u × u = 0 8. u × v = −v × u

9. (u+ v)× w = u × w+ v × w

10. (tu)× v = u × (tv) = t (u × v)

11. u • (u × v) = v • (u × v) = 0

12. Obtain the addition formula

sin(α − β) = sinα cosβ − cosα sinβ

by examining the cross product of the two unit vectors
u = cosβi+ sinβj and v = cosαi+ sinαj. Assume

0 ≤ α − β ≤ π . Hint: Regard u and v as position vectors.
What is the area of the parallelogram they span?

13. If u+ v+ w = 0, show that u × v = v × w = w × u.

14.A (Volume of a tetrahedron) A tetrahedron is a pyramid
with a triangular base and three other triangular faces. It has
four vertices and six edges. Like any pyramid or cone, its
volume is equal to 1

3 Ah, where A is the area of the base and
h is the height measured perpendicular to the base. If u, v,
and w are vectors coinciding with the three edges of a
tetrahedron that meet at one vertex, show that the tetrahedron
has volume given by

Volume = 1

6
|u • (v × w)| = 1

6
|
∣∣∣∣∣ u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣ |.
Thus, the volume of a tetrahedron spanned by three vectors is
one-sixth of the volume of the parallelepiped spanned by the
same vectors.

15. Find the volume of the tetrahedron with vertices (1, 0, 0),
(1, 2, 0), (2, 2, 2), and (0, 3, 2).

16. Find the volume of the parallelepiped spanned by the
diagonals of the three faces of a cube of side a that meet at
one vertex of the cube.

17. For what value of k do the four points (1, 1,−1), (0, 3,−2),
(−2, 1, 0), and (k, 0, 2) all lie in a plane?

A 18. (The scalar triple product) Verify the identities

u • (v × w) = v • (w × u) = w • (u × v).

19. If u • (v × w) 
= 0 and x is an arbitrary 3-vector, find the
numbers λ, μ, and ν such that

x = λu+ μv+ νw.

20. If u • (v × w) = 0 but v × w 
= 0, show that there are
constants λ and μ such that

u = λv+ μw.

Hint: Use the result of Exercise 19 with u in place of x and
v × w in place of u.

21. Calculate u × (v × w) and (u × v)× w, given that
u = i+ 2j+ 3k, v = 2i− 3j, and w = j− k. Why would
you not expect these to be equal?

22. Does the notation u • v × w make sense? Why? How about
the notation u × v × w?

A23. (The vector triple product) The product u × (v × w) is
called a vector triple product. Since it is perpendicular to
v × w, it must lie in the plane of v and w. Show that

u × (v × w) = (u • w)v− (u • v)w.

Hint: This can be done by direct calculation of the
components of both sides of the equation, but the job is much
easier if you choose coordinate axes so that v lies along the
x-axis and w lies in the xy-plane.

24. If u, v, and w are mutually perpendicular vectors, show that
u × (v × w) = 0. What is u • (v × w) in this case?

25. Show that u × (v × w)+ v × (w × u)+w × (u × v) = 0.

26. Find all vectors x that satisfy the equation

(−i+ 2j+ 3k)× x = i+ 5j− 3k.

27. Show that the equation

(−i+ 2j+ 3k)× x = i+ 5j

has no solutions for the unknown vector x.

28. What condition must be satisfied by the nonzero vectors a
and b to guarantee that the equation a × x = b has a solution
for x? Is the solution unique?
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E X E R C I S E S 10.4

1. A single equation involving the coordinates (x, y, z) need
not always represent a two-dimensional “surface” in R

3. For
example, x2 + y2 + z2 = 0 represents the single point
(0, 0, 0), which has dimension zero. Give examples of single
equations in x , y, and z that represent

(a) a (one-dimensional) straight line,

(b) the whole of R3,

(c) no points at all (i.e., the empty set).

In Exercises 2–9, find equations of the planes satisfying the given
conditions.

2. Passing through (0, 2,−3) and normal to the vector
4i− j− 2k

3. Passing through the origin and having normal i− j+ 2k

4. Passing through (1, 2, 3) and parallel to the plane
3x + y − 2z = 15

5. Passing through the three points (1, 1, 0), (2, 0, 2), and
(0, 3, 3)

6. Passing through the three points (−2, 0, 0), (0, 3, 0), and
(0, 0, 4)

7. Passing through (1, 1, 1) and (2, 0, 3) and perpendicular to
the plane x + 2y − 3z = 0

8. Passing through the line of intersection of the planes
2x + 3y − z = 0 and x − 4y + 2z = −5, and passing
through the point (−2, 0,−1)

9. Passing through the line x + y = 2, y − z = 3, and
perpendicular to the plane 2x + 3y + 4z = 5

10. Under what geometric condition will three distinct points in
R

3 not determine a unique plane passing through them?
How can this condition be expressed algebraically in terms
of the position vectors, r1, r2, and r3, of the three points?

11. Give a condition on the position vectors of four points that
guarantees that the four points are coplanar, that is, all lie
on one plane.

Describe geometrically the one-parameter families of planes in
Exercises 12–14. (λ is a real parameter.)

12. x + y + z = λ. 13.I x + λy + λz = λ.

14.I λx +
√

1− λ2 y = 1.

In Exercises 15–19, find equations of the line specified in vector
and scalar parametric forms and in standard form.

15. Through the point (1, 2, 3) and parallel to 2i− 3j− 4k

16. Through (−1, 0, 1) and perpendicular to the plane
2x − y + 7z = 12

17. Through the origin and parallel to the line of intersection of
the planes x + 2y − z = 2 and 2x − y + 4z = 5

18. Through (2,−1,−1) and parallel to each of the two planes
x + y = 0 and x − y + 2z = 0

19. Through (1, 2,−1) and making equal angles with the
positive directions of the coordinate axes

In Exercises 20–22, find the equations of the given line in
standard form.

20. r = (1− 2t)i+ (4+ 3t)j+ (9− 4t)k.

21.

{
x = 4− 5t
y = 3t
z = 7

22.
{

x − 2y + 3z = 0
2x + 3y − 4z = 4

23. If P1 = (x1, y1, z1) and P2 = (x2, y2, z2), show that the
equations⎧⎪⎨⎪⎩

x = x1 + t (x2 − x1)

y = y1 + t (y2 − y1)

z = z1 + t (z2 − z1)

represent a line through P1 and P2.

24. What points on the line in Exercise 23 correspond to the
parameter values t = −1, t = 1/2, and t = 2? Describe their
locations.

25. Under what conditions on the position vectors of four
distinct points P1, P2, P3, and P4 will the straight line
through P1 and P2 intersect the straight line through P3 and
P4 at a unique point?

Find the required distances in Exercises 26–29.

26. From the origin to the plane x + 2y + 3z = 4

27. From (1, 2, 0) to the plane 3x − 4y − 5z = 2

28. From the origin to the line x + y + z = 0, 2x − y − 5z = 1

29. Between the lines{
x + 2y = 3
y + 2z = 3

and
{

x + y + z = 6
x − 2z = −5

30. Show that the line x − 2 = y + 3

2
= z − 1

4
is parallel to the

plane 2y − z = 1. What is the distance between the line and
the plane?

In Exercises 31–32, describe the one-parameter families of
straight lines represented by the given equations. (λ is a real
parameter.)

31.I (1− λ)(x − x0) = λ(y − y0), z = z0.

32.I
x − x0√
1− λ2

= y − y0

λ
= z − z0.

33. Why does the factored second-degree equation

(A1x + B1 y + C1z − D1)(A2x + B2 y + C2z − D2) = 0

represent a pair of planes rather than a single straight line?
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E X E R C I S E S 10.5

Identify the surfaces represented by the equations in
Exercises 1–16 and sketch their graphs.

1. x2 + 4y2 + 9z2 = 36 2. x2 + y2 + 4z2 = 4

3. 2x2 + 2y2 + 2z2 − 4x + 8y − 12z + 27 = 0

4. x2 + 4y2 + 9z2 + 4x − 8y = 8

5. z = x2 + 2y2 6. z = x2 − 2y2

7. x2 − y2 − z2 = 4 8. −x2 + y2 + z2 = 4

9. z = xy 10. x2 + 4z2 = 4

11. x2 − 4z2 = 4 12. y = z2

13. x = z2 + z 14. x2 = y2 + 2z2

15. (z − 1)2 = (x − 2)2 + (y − 3)2

16. (z − 1)2 = (x − 2)2 + (y − 3)2 + 4

Describe and sketch the geometric objects represented by the
systems of equations in Exercises 17–20.

17.
{

x2 + y2 + z2 = 4
x + y + z = 1

18.
{

x2 + y2 = 1
z = x + y

19.
{

z2 = x2 + y2

z = 1+ x
20.

{
x2 + 2y2 + 3z2 = 6
y = 1

21. Find two one-parameter families of straight lines that lie on
the hyperboloid of one sheet

x2

a2 +
y2

b2 −
z2

c2 = 1.

22. Find two one-parameter families of straight lines that lie on
the hyperbolic paraboloid z = xy.

23. The equation 2x2 + y2 = 1 represents a cylinder with
elliptical cross-sections in planes perpendicular to the z-axis.
Find a vector a perpendicular to which the cylinder has
circular cross-sections.

24.I The equation z2 = 2x2 + y2 represents a cone with elliptical
cross-sections in planes perpendicular to the z-axis. Find a
vector a perpendicular to which the cone has circular
cross-sections. Hint: Do Exercise 23 first and use its result.
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E X E R C I S E S 10.6
1. Convert the Cartesian coordinates (2,−2, 1) to cylindrical

coordinates and to spherical coordinates.

2. Convert the cylindrical coordinates [2, π/6,−2] to Cartesian
coordinates and to spherical coordinates.

3. Convert the spherical coordinates [4, π/3, 2π/3] to
Cartesian coordinates and to cylindrical coordinates.

4. A point P has spherical coordinates [1, φ, θ ] and cylindrical
coordinates [r, π/4, r ]. Find the Cartesian coordinates of the
point.

Describe the sets of points in 3-space that satisfy the equations in
Exercises 5–14. Here, r , θ , R, and φ denote the appropriate
cylindrical or spherical coordinates.

5. θ = π/2 6. φ = 2π/3

7. φ = π/2 8. R = 4

9. r = 4 10. R = z

11. R = r 12. R = 2x

13. R = 2 cosφ 14. r = 2 cos θ
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E X E R C I S E S 11.1
In Exercises 1–14, find the velocity, speed, and acceleration at
time t of the particle whose position is r(t). Describe the path of
the particle.

1. r = i+ tj 2. r = t2i+ k

3. r = t2j+ tk 4. r = i+ tj+ tk

5. r = t2i− t2j+ k 6. r = t i+ t2j+ t2k

7. r = a cos t i+ a sin t j+ ctk

8. r = a cosωt i+ bj+ a sinωt k

9. r = 3 cos t i+ 4 cos t j+ 5 sin t k

10. r = 3 cos t i+ 4 sin t j+ tk

11. r = aet i+ bet j+ cet k

12. r = at cosωt i+ at sinωt j+ b ln t k

13. r = e−t cos(et )i+ e−t sin(et )j− et k

14. r = a cos t sin t i+ a sin2 t j+ a cos t k

15. A particle moves around the circle x2 + y2 = 25 at constant
speed, making one revolution in 2 s. Find its acceleration
when it is at (3, 4).

16. A particle moves to the right along the curve y = 3/x . If its
speed is 10 when it passes through the point

(
2, 3

2

)
, what is

its velocity at that time?

17. A point P moves along the curve of intersection of the
cylinder z = x2 and the plane x + y = 2 in the direction of
increasing y with constant speed v = 3. Find the velocity of
P when it is at (1, 1, 1).

18. An object moves along the curve y = x2, z = x3, with
constant vertical speed dz/dt = 3. Find the velocity and
acceleration of the object when it is at the point (2, 4, 8).

19. A particle moves along the curve r = 3ui+ 3u2j+ 2u3k in
the direction corresponding to increasing u and with a
constant speed of 6. Find the velocity and acceleration of the
particle when it is at the point (3, 3, 2).

20. A particle moves along the curve of intersection of the
cylinders y = −x2 and z = x2 in the direction in which x
increases. (All distances are in centimetres.) At the instant
when the particle is at the point (1,−1, 1), its speed is
9 cm/s, and that speed is increasing at a rate of 3 cm/s2. Find
the velocity and acceleration of the particle at that instant.

21. Show that if the dot product of the velocity and acceleration

of a moving particle is positive (or negative), then the speed
of the particle is increasing (or decreasing).

22. Verify the formula for the derivative of a dot product given in
Theorem 1(c).

23. Verify the formula for the derivative of a 3× 3 determinant
in the second remark following Theorem 1. Use this formula
to verify the formula for the derivative of the cross product in
Theorem 1.

24. If the position and velocity vectors of a moving particle are
always perpendicular, show that the path of the particle lies
on a sphere.

25. Generalize Exercise 24 to the case where the velocity of the
particle is always perpendicular to the line joining the
particle to a fixed point P0.

26. What can be said about the motion of a particle at a time
when its position and velocity satisfy r • v > 0? What can be
said when r • v < 0?

In Exercises 27–32, assume that the vector functions encountered
have continuous derivatives of all required orders.

27. Show that
d

dt

(
du
dt

×
d 2u
dt2

)
= du

dt
×

d3u
dt3 .

28. Write the Product Rule for
d

dt

(
u • (v × w)

)
.

29. Write the Product Rule for
d

dt

(
u × (v × w)

)
.

30. Expand and simplify:
d

dt

(
u ×

(du
dt

×
d 2u
dt2

))
.

31. Expand and simplify:
d

dt

(
(u+ u′′) • (u × u′)

)
.

32. Expand and simplify:
d

dt

(
(u × u′) • (u′ × u′′)

)
.

33. If at all times t the position and velocity vectors of a moving
particle satisfy v(t) = 2r(t), and if r(0) = r0, find r(t) and
the acceleration a(t). What is the path of motion?

34.P Verify that r = r0 cos(ωt)+ (v0/ω) sin(ωt) satisfies the
initial-value problem

d2r
dt2 = −ω2r, r′(0) = v0, r(0) = r0.

(It is the unique solution.) Describe the path r(t). What is
the path if r0 is perpendicular to v0?

P 35. (Free fall with air resistance) A projectile falling under
gravity and slowed by air resistance proportional to its speed
has position satisfying

d 2r
dt2 = −gk− c

dr
dt
,

where c is a positive constant. If r = r0 and dr/dt = v0 at
time t = 0, find r(t). (Hint: Let w = ect (dr/dt).) Show that
the solution approaches that of the projectile problem given
in this section as c→ 0.
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E X E R C I S E S 11.3
In Exercises 1–4, find the required parametrization of the first
quadrant part of the circular arc x2 + y2 = a2.

1. In terms of the y-coordinate, oriented counterclockwise

2. In terms of the x-coordinate, oriented clockwise

3. In terms of the angle between the tangent line and the
positive x-axis, oriented counterclockwise

4. In terms of arc length measured from (0, a), oriented
clockwise

5. The cylinders z = x2 and z = 4y2 intersect in two curves,
one of which passes through the point (2,−1, 4). Find a
parametrization of that curve using t = y as parameter.

6. The plane x + y + z = 1 intersects the cylinder z = x2 in a
parabola. Parametrize the parabola using t = x as parameter.

In Exercises 7–10, parametrize the curve of intersection of the
given surfaces. Note: the answers are not unique.

7. x2 + y2 = 9 and z = x + y

8. z =
√

1− x2 − y2 and x + y = 1

9. z = x2 + y2 and 2x − 4y − z − 1 = 0

10. yz + x = 1 and xz − x = 1

11. The plane z = 1+ x intersects the cone z2 = x2 + y2 in a
parabola. Try to parametrize the parabola using as
parameter: (a) t = x , (b) t = y, and (c) t = z.
Which of these choices for t leads to a single parametrization
that represents the whole parabola? What is that
parametrization? What happens with the other two choices?

12.I The plane x + y + z = 1 intersects the sphere
x2 + y2 + z2 = 1 in a circle C. Find the centre r0 and radius
r of C. Also find two perpendicular unit vectors v̂1 and v̂2
parallel to the plane of C. (Hint: To be specific, show that
v̂1 = (i− j)/

√
2 is one such vector; then find a second that is

perpendicular to v̂1.) Use your results to construct a
parametrization of C.

13. Find the length of the curve r = t2i+ t2j+ t3k from t = 0
to t = 1.

14. For what values of the parameter λ is the length s(T ) of the
curve r = t i+ λt2j+ t3k, (0 ≤ t ≤ T ) given by
s(T ) = T + T 3?

15. Express the length of the curve r = at2 i+ bt j+ c ln t k,
(1 ≤ t ≤ T ), as a definite integral. Evaluate the integral if
b2 = 4ac.

16. Describe the parametric curve C given by

x = a cos t sin t, y = a sin2 t, z = bt.

What is the length of C between t = 0 and t = T > 0?

17. Find the length of the conical helix given by the
parametrization r = t cos t i+ t sin t j+ t k, (0 ≤ t ≤ 2π).
Why is the curve called a conical helix?

18. Describe the intersection of the sphere x2 + y2 + z2 = 1 and
the elliptic cylinder x2 + 2z2 = 1. Find the total length of
this intersection curve.

19. Let C be the curve x = et cos t , y = et sin t , z = t between
t = 0 and t = 2π . Find the length of C.

20. Find the length of the piecewise smooth curve r = t3i+ t2j,
(−1 ≤ t ≤ 2).

21. Describe the piecewise smooth curve C = C1 + C2, where
r1(t) = t i+ tj, (0 ≤ t ≤ 1), and r2(t) = (1− t)i+ (1+ t)j,
(0 ≤ t ≤ 1).

22.I A cable of length L and circular cross-section of radius a is
wound around a cylindrical spool of radius b with no
overlapping and with the adjacent windings touching one
another. What length of the spool is covered by the cable?

In Exercises 23–26, reparametrize the given curve in the same
orientation in terms of arc length measured from the point where
t = 0.

23. r = At i+ Btj+ Ctk, (A2 + B2 + C2 > 0)

24. r = et i+
√

2tj− e−t k

0( ≤ t ≤ π

2
)I 25. r = a cos3 t i+ a sin3 t j+ b cos 2t k,

I 26. r = 3t cos t i+ 3t sin t j+ 2
√

2t3/2k

A 27. Let r = r1(t), (a ≤ t ≤ b), and r = r2(u), (c ≤ u ≤ d), be
two parametrizations of the same curve C, each one-to-one
on its domain and each giving C the same orientation (so that
r1(a) = r2(c) and r1(b) = r2(d)). Then for each t in [a, b]
there is a unique u = u(t) such that r2(u(t)) = r1(t). Show
that∫ b

a

∣∣∣∣ d

dt

∣∣
r1(t)∣∣ dt =

∫ d

c

∣∣∣∣ d

du

∣∣
r2(u)∣∣ du,

and thus that the length of C is independent of
parametrization.

A28. If the curve r = r(t) has continuous, nonvanishing velocity
v(t) on the interval [a, b], and if t0 is some point in [a, b],
show that the function

s = g(t) =
∫ t

t0
|v(u)| du

is an increasing function on [a, b] and so has an inverse:

t = g−1(s) ⇐⇒ s = g(t).

Hence, show that the curve can be parametrized in terms of
arc length measured from r(t0).
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In Exercises 1–10, find all the first partial derivatives of the
function specified, and evaluate them at the given point.

1. f (x, y) = x − y + 2, (3, 2)

2. f (x, y) = xy + x2, (2, 0)

3. f (x, y, z) = x3 y4z5, (0,−1,−1)

4. g(x, y, z) = xz

y + z
, (1, 1, 1)

5. z = tan−1
( y

x

)
, (−1, 1)

6. w = ln(1+ exyz), (2, 0,−1)

7. f (x, y) = sin(x
√

y),
(π

3
, 4
)

8. f (x, y) = 1√
x2 + y2

, (−3, 4)

9. w = x (y ln z), (e, 2, e)

10. g(x1, x2, x3, x4) =
x1 − x2

2

x3 + x2
4

, (3, 1,−1,−2)

In Exercises 11–12, calculate the first partial derivatives of the
given functions at (0, 0). You will have to use Definition 4.

11. f (x, y) =
⎧⎨⎩ 2x3 − y3

x2 + 3y2 , if (x, y) 
= (0, 0)

0, if (x, y) = (0, 0).

12. f (x, y) =
⎧⎨⎩ x2 − 2y2

x − y
, if x 
= y

0, if x = y.
In Exercises 13–22, find equations of the tangent plane and
normal line to the graph of the given function at the point with
specified values of x and y.

13. f (x, y) = x2 − y2 at (−2, 1)

14. f (x, y) = x − y

x + y
at (1, 1)

15. f (x, y) = cos(x/y) at (π, 4)

16. f (x, y) = exy at (2, 0)

17. f (x, y) = x

x2 + y2 at (1, 2)

18. f (x, y) = y e−x2
at (0, 1)

19. f (x, y) = ln(x2 + y2) at (1,−2)

20. f (x, y) = 2xy

x2 + y2 at (0, 2)

21. f (x, y) = tan−1(y/x) at (1,−1)

22. f (x, y) =
√

1+ x3 y2 at (2, 1)

23. Find the coordinates of all points on the surface with
equation z = x4 − 4xy3 + 6y2 − 2 where the surface has a
horizontal tangent plane.

24. Find all horizontal planes that are tangent to the surface with
equation z = xye−(x2+y2)/2. At what points are they
tangent?

In Exercises 25–31, show that the given function satisfies the
given partial differential equation.

25.P z = x ey, x
∂z

∂x
= ∂z

∂y

26.P z = x + y

x − y
, x

∂z

∂x
+ y

∂z

∂y
= 0

27.P z =
√

x2 + y2, x
∂z

∂x
+ y

∂z

∂y
= z

28.P w = x2 + yz, x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z
= 2w

29.P w = 1

x2 + y2 + z2 , x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z
= −2w

30.P z = f (x2 + y2), where f is any differentiable function of
one variable,

y
∂z

∂x
− x

∂z

∂y
= 0.

31.P z = f (x2 − y2), where f is any differentiable function of
one variable,

y
∂z

∂x
+ x

∂z

∂y
= 0.
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32. Give a formal definition of the three first partial derivatives
of the function f (x, y, z).

33. What is an equation of the “tangent hyperplane” to the graph

w = f (x, y, z) at
(

a, b, c, f (a, b, c)
)

?

34.I Find the distance from the point (1, 1, 0) to the circular
paraboloid with equation z = x2 + y2.

35.I Find the distance from the point (0, 0, 1) to the elliptic
paraboloid having equation z = x2 + 2y2.

36.I Let f (x, y) =
{ 2xy

x2 + y2 , if (x, y) 
= (0, 0)

0, if (x, y) = (0, 0).
Note that f is not continuous at (0, 0). (See Example 3 of
Section 12.2.) Therefore, its graph is not smooth there.
Show, however, that f1(0, 0) and f2(0, 0) both exist. Hence,
the existence of partial derivatives does not imply that a
function of several variables is continuous. This is in
contrast to the single-variable case.

37. Determine f1(0, 0) and f2(0, 0) if they exist, where

f (x, y) =
{
(x3 + y) sin

1

x2 + y2 , if (x, y) 
= (0, 0)

0, if (x, y) = (0, 0).

38. Calculate f1(x, y) for the function in Exercise 37. Is
f1(x, y) continuous at (0, 0)?

39.I Let f (x, y) =
⎧⎨⎩ x3 − y3

x2 + y2 , if (x, y) 
= (0, 0)

0, if (x, y) = (0, 0).
Calculate f1(x, y) and f2(x, y) at all points (x, y) in the
plane. Is f continuous at (0, 0)? Are f1 and f2 continuous at
(0, 0)?

40.I Let f (x, y, z) =
⎧⎨⎩ xy2z

x4 + y4 + z4 , if (x, y, z) 
= (0, 0, 0)

0, if (x, y, z) = (0, 0, 0).
Find f1(0, 0, 0), f2(0, 0, 0), and f3(0, 0, 0). Is f continuous
at (0, 0, 0)? Are f1, f2, and f3 continuous at (0, 0, 0)?
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In Exercises 1–6, find:

(a) the gradient of the given function at the point indicated,

(b) an equation of the plane tangent to the graph of the given
function at the point whose x and y coordinates are given,
and

(c) an equation of the straight line tangent, at the given point, to
the level curve of the given function passing through that
point.

1. f (x, y) = x2 − y2 at (2,−1)
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2. f (x, y) = x − y

x + y
at (1, 1)

3. f (x, y) = x

x2 + y2 at (1, 2)

4. f (x, y) = exy at (2, 0)

5. f (x, y) = ln(x2 + y2) at (1,−2)

6. f (x, y) =
√

1+ xy2 at (2,−2)

In Exercises 7–9, find an equation of the tangent plane to the level
surface of the given function that passes through the given point.

7. f (x, y, z) = x2 y + y2z + z2x at (1,−1, 1)

8. f (x, y, z) = cos(x + 2y + 3z) at
(π

2
, π, π

)
9. f (x, y, z) = y e−x2

sin z at (0, 1, π/3)

In Exercises 10–13, find the rate of change of the given function
at the given point in the specified direction.

10. f (x, y) = 3x − 4y at (0, 2) in the direction of the vector−2i

11. f (x, y) = x2 y at (−1,−1) in the direction of the vector
i+ 2j

12. f (x, y) = x

1+ y
at (0, 0) in the direction of the vector i− j

13. f (x, y) = x2 + y2 at (1,−2) in the direction making a
(positive) angle of 60◦ with the positive x-axis

14. Let f (x, y) = ln |r|, where r = x i+ yj. Show that

∇ f = r
|r|2 .

15. Let f (x, y, z) = |r|−n , where r = x i+ yj+ zk. Show that

∇ f = −nr
|r|n+2 .

16.A Show that, in terms of polar coordinates (r, θ) (where
x = r cos θ and y = r sin θ ), the gradient of a function
f (r, θ) is given by

∇ f = ∂ f

∂r
r̂+ 1

r

∂ f

∂θ
θ̂,

where r̂ is a unit vector in the direction of the position vector
r = x i+ y j, and θ̂ is a unit vector at right angles to r̂ in the
direction of increasing θ .

17. In what directions at the point (2, 0) does the function
f (x, y) = xy have rate of change −1? Are there directions
in which the rate is −3? How about −2?

18. In what directions at the point (a, b, c) does the function
f (x, y, z) = x2 + y2 − z2 increase at half of its maximal
rate at that point?

19. Find ∇ f (a, b) for the differentiable function f (x, y) given
the directional derivatives

D(i+j)/
√

2 f (a, b) = 3
√

2 and D(3i−4j)/5 f (a, b) = 5.

20. If f (x, y) is differentiable at (a, b), what condition should
angles φ1 and φ2 satisfy in order that the gradient ∇ f (a, b)
can be determined from the values of the directional
derivatives Dφ1 f (a, b) and Dφ2 f (a, b)?

21. The temperature T (x, y) at points of the xy-plane is given by
T (x, y) = x2 − 2y2.

(a) Draw a contour diagram for T showing some isotherms
(curves of constant temperature).

(b) In what direction should an ant at position (2,−1) move
if it wishes to cool off as quickly as possible?

(c) If the ant moves in that direction at speed k (units
distance per unit time), at what rate does it experience
the decrease of temperature?

(d) At what rate would the ant experience the decrease of
temperature if it moved from (2,−1) at speed k in the
direction of the vector −i− 2j?

(e) Along what curve through (2,−1) should the ant move
in order to continue to experience maximum rate of
cooling?

22. Find an equation of the curve in the xy-plane that passes
through the point (1, 1) and intersects all level curves of the
function f (x, y) = x4 + y2 at right angles.

23. Find an equation of the curve in the xy-plane that passes
through the point (2,−1) and that intersects every curve with
equation of the form x2 y3 = K at right angles.

24. Find the second directional derivative of e−x2−y2
at the point

(a, b) 
= (0, 0) in the direction directly away from the origin.

25. Find the second directional derivative of f (x, y, z) = xyz at
(2, 3, 1) in the direction of the vector i− j− k.

26. Find a vector tangent to the curve of intersection of the two
cylinders x2 + y2 = 2 and y2 + z2 = 2 at the point
(1,−1, 1).

27. Repeat Exercise 26 for the surfaces x + y + z = 6 and
x2 + y2 + z2 = 14 and the point (1, 2, 3).

28. The temperature in 3-space is given by

T (x, y, z) = x2 − y2 + z2 + xz2.

At time t = 0 a fly passes through the point (1, 1, 2), flying
along the curve of intersection of the surfaces z = 3x2 − y2

and 2x2 + 2y2 − z2 = 0. If the fly’s speed is 7, what rate of
temperature change does it experience at t = 0?

29.A State and prove a version of Theorem 6 for a function of
three variables.

30. What is the level surface of f (x, y, z) = cos(x + 2y + 3z)
that passes through (π, π, π)? What is the tangent plane to
that level surface at that point? (Compare this exercise with
Exercise 8 above.)

31.A If ∇ f (x, y) = 0 throughout the disk x2 + y2 < r2, prove
that f (x, y) is constant throughout the disk.

32.A Theorem 6 implies that the level curve of f (x, y) passing
through (a, b) is smooth (has a tangent line) at (a, b)
provided f is differentiable at (a, b) and satisfies
∇ f (a, b) 
= 0. Show that the level curve need not be smooth
at (a, b) if ∇ f (a, b) = 0. (Hint: Consider
f (x, y) = y3 − x2 at (0, 0).)

33.A If v is a nonzero vector, express Dv(Dv f ) in terms of the
components of v and the second partials of f . What is the
interpretation of this quantity for a moving observer?

34.I An observer moves so that his position, velocity, and
acceleration at time t are given by the formulas
r(t) = x(t) i+ y(t) j+ z(t) k, v(t) = dr/dt , and
a(t) = dv/dt . If the temperature in the vicinity of the
observer depends only on position, T = T (x, y, z), express
the second time derivative of temperature as measured by the
observer in terms of Dv and Da.
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35.I Repeat Exercise 34 but with T depending explicitly on time
as well as position: T = T (x, y, z, t).

36. Let f (x, y) =
⎧⎨⎩

sin(xy)√
x2 + y2

, if (x, y) 
= (0, 0)

0, if (x, y) = (0, 0).

(a) Calculate ∇ f (0, 0).

(b) Use the definition of directional derivative to calculate
Du f (0, 0), where u = (i+ j)/

√
2.

(c) Is f (x, y) differentiable at (0, 0)? Why?

37.A Let f (x, y) =
{

2x2 y/(x4 + y2), if (x, y) 
= (0, 0)
0, if (x, y) = (0, 0).

Use the definition of directional derivative as a limit
(Definition 7) to show that Du f (0, 0) exists for every unit
vector u = ui+ vj in the plane. Specifically, show that
Du f (0, 0) = 0 if v = 0, and Du f (0, 0) = 2u2/v if v 
= 0.
However, as was shown in Example 4 in Section 12.2,
f (x, y) has no limit as (x, y)→ (0, 0), so it is not
continuous there. Even if a function has directional
derivatives in all directions at a point, it may not be
continuous at that point.
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y

x1 2 3

1

2

Figure 14.8

Exercises 1–6 refer to the double integral

I =
∫∫

D
(5− x − y) d A,

where D is the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2. P is the
partition of D into six squares of side 1 as shown in Figure 14.8.
In Exercises 1–5, calculate the Riemann sums for I
corresponding to the given choices of points (x∗i j , y∗i j ).

1. (x∗i j , y∗i j ) is the upper-left corner of each square.

2. (x∗i j , y∗i j ) is the upper-right corner of each square.

3. (x∗i j , y∗i j ) is the lower-left corner of each square.

4. (x∗i j , y∗i j ) is the lower-right corner of each square.

5. (x∗i j , y∗i j ) is the centre of each square.

6. Evaluate I by interpreting it as a volume.

In Exercises 7–10, D is the disk x2 + y2 ≤ 25, and P is the
partition of the square −5 ≤ x ≤ 5, −5 ≤ y ≤ 5 into one
hundred 1× 1 squares, as shown in Figure 14.9. Approximate
the double integral

J =
∫∫

D
f (x, y) d A,

where f (x, y) = 1 by calculating the Riemann sums R( f, P)
corresponding to the indicated choice of points in the small
squares. Hint: Using symmetry will make the job easier.

y

x−5

−5

5

5

Figure 14.9

7. (x∗i j , y∗i j ) is the corner of each square closest to the origin.

8. (x∗i j , y∗i j ) is the corner of each square farthest from the origin.

9. (x∗i j , y∗i j ) is the centre of each square.

10. Evaluate J .

C 11. Repeat Exercise 5 using the integrand ex instead of
5− x − y.

C 12. Repeat Exercise 9 using f (x, y) = x2 + y2 instead of
f (x, y) = 1.

In Exercises 13–22, evaluate the given double integral by
inspection.

13.
∫∫

R
d A, where R is the rectangle −1 ≤ x ≤ 3,

−4 ≤ y ≤ 1

14.
∫∫

D
(x + 3) d A, where D is the half-disk

0 ≤ y ≤
√

4− x2

15.
∫∫

T
(x + y) d A, where T is the parallelogram having the

points (2, 2), (1,−1), (−2,−2), and (−1, 1) as vertices

16.
∫∫
|x |+|y|≤1

(
x3 cos(y2)+ 3 sin y − π

)
d A

17.
∫∫

x2+y2≤1
(4x2 y3 − x + 5) d A

18.
∫∫

x2+y2≤a2

√
a2 − x2 − y2 d A

19.
∫∫

x2+y2≤a2
(a −

√
x2 + y2) d A

20.
∫∫

S
(x + y) d A, where S is the square 0 ≤ x ≤ a, 0 ≤ y ≤ a

21.
∫∫

T
(1− x − y) d A, where T is the triangle with vertices

(0, 0), (1, 0), and (0, 1)

22.
∫∫

R

√
b2 − y2 d A, where R is the rectangle

0 ≤ x ≤ a, 0 ≤ y ≤ b
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In Exercises 1–4, calculate the given iterated integrals.

1.
∫ 1

0
dx
∫ x

0
(xy + y2) dy 2.

∫ 1

0

∫ y

0
(xy + y2) dx dy

3.
∫ π

0

∫ x

−x
cos y dy dx 4.

∫ 2

0
dy
∫ y

0
y2exy dx

In Exercises 5–14, evaluate the double integrals by iteration.

5.
∫∫

R
(x2 + y2) d A, where R is the rectangle 0 ≤ x ≤ a,

0 ≤ y ≤ b

6.
∫∫

R
x2 y2 d A, where R is the rectangle of Exercise 5

7.
∫∫

S
(sin x + cos y) d A, where S is the square

0 ≤ x ≤ π/2, 0 ≤ y ≤ π/2

8.
∫∫

T
(x − 3y) d A, where T is the triangle with vertices (0, 0),

(a, 0), and (0, b)

9.
∫∫

R
xy2 d A, where R is the finite region in the first quadrant

bounded by the curves y = x2 and x = y2

10.
∫∫

D
x cos y d A, where D is the finite region in the first

quadrant bounded by the coordinate axes and the curve
y = 1− x2

11.
∫∫

D
ln x d A, where D is the finite region in the first quadrant

bounded by the line 2x + 2y = 5 and the hyperbola xy = 1

12.
∫∫

T

√
a2 − y2 d A, where T is the triangle with vertices

(0, 0), (a, 0), and (a, a)

13.
∫∫

R

x

y
ey d A, where R is the region

0 ≤ x ≤ 1, x2 ≤ y ≤ x

14.
∫∫

T

xy

1+ x4 d A, where T is the triangle with vertices (0, 0),

(1, 0), and (1, 1)
In Exercises 15–18, sketch the domain of integration and evaluate
the given iterated integrals.

15.
∫ 1

0
dy
∫ 1

y
e−x2

dx 16.
∫ π/2

0
dy
∫ π/2

y

sin x

x
dx

17.
∫ 1

0
dx
∫ 1

x

yλ

x2 + y2 dy (λ > 0)

18.
∫ 1

0
dx
∫ x1/3

x

√
1− y4 dy

In Exercises 19–28, find the volumes of the indicated solids.

19. Under z = 1− x2 and above the region 0 ≤ x ≤ 1,
0 ≤ y ≤ x

20. Under z = 1− x2 and above the region 0 ≤ y ≤ 1,
0 ≤ x ≤ y

21. Under z = 1− x2 − y2 and above the region x ≥ 0, y ≥ 0,
x + y ≤ 1

22. Under z = 1− y2 and above z = x2

23. Under the surface z = 1/(x + y) and above the region in the
xy-plane bounded by x = 1, x = 2, y = 0, and y = x

24. Under the surface z = x2 sin(y4) and above the triangle in
the xy-plane with vertices (0, 0), (0, π1/4), and (π1/4, π1/4)

25. Above the xy-plane and under the surface
z = 1− x2 − 2y2

26. Above the triangle with vertices (0, 0), (a, 0), and (0, b), and
under the plane z = 2− (x/a)− (y/b)

27. Inside the two cylinders x2 + y2 = a2 and y2 + z2 = a2

28. Inside the cylinder x2 + 2y2 = 8, above the plane z = y − 4,
and below the plane z = 8− x

A 29. Suppose that f (x, t) and f1(x, t) are continuous on the
rectangle a ≤ x ≤ b and c ≤ t ≤ d. Let

g(x) =
∫ d

c
f (x, t) dt and G(x) =

∫ d

c
f1(x, t) dt.

∫Show that g′(x) = G(x) for a < x < b. Hint: Evaluate
x

a G(u) du by reversing the order of iteration. Then
differentiate the result. This is a different version of
Theorem 6 of Section 13.6.

A30. Let F ′(x) = f (x) and G ′(x) = g(x) on the interval
a ≤ x ≤ b. Let T be the∫∫triangle with vertices (a, a), (b, a),

T f (x)g(y) d A in both directions,and (b, b). By iterating
show that∫ b

a
f (x)G(x) dx

= F(b)G(b)− F(a)G(a)−
∫ b

g(y)F(y) dy.
a

(This is an alternative derivation of the formula for
integration by parts.)

M 31. Use Maple’s int routine or similar routines in other computer
algebra systems to evaluate the iterated integrals in
Exercises 1–4 or the iterated integrals you constructed in the
remaining exercises above.
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E X E R C I S E S 14.4
In Exercises 1–6, evaluate the given double integral over the disk
D given by x2 + y2 ≤ a2, where a > 0.

1.
∫∫

D
(x2 + y2) d A 2.

∫∫
D

√
x2 + y2 d A

3.
∫∫

D

1√
x2 + y2

d A 4.
∫∫

D
|x | d A

5.
∫∫

D
x2 d A 6.

∫∫
D

x2 y2 d A

In Exercises 7–10, evaluate the given double integral over the
quarter-disk Q given by x ≥ 0, y ≥ 0, and x2 + y2 ≤ a2, where
a > 0.

7.
∫∫

Q
y d A 8.

∫∫
Q
(x + y) d A

9.
∫∫

Q
ex2+y2

d A 10.
∫∫

Q

2xy

x2 + y2 d A

11. Evaluate
∫∫

S
(x + y) d A, where S is the region in the first

quadrant lying inside the disk x2 + y2 ≤ a2 and under the
line y = √3x .

12. Find
∫∫

S
x d A, where S is the disk segment x2 + y2 ≤ 2,

x ≥ 1.

13. Evaluate
∫∫

T
(x2 + y2) d A, where T is the triangle with

vertices (0, 0), (1, 0), and (1, 1).

14. Evaluate
∫∫

x2+y2≤1
ln(x2 + y2) d A.

15. Find the average distance from the origin to points in the disk
x2 + y2 ≤ a2.

16. Find the average value of e−(x2+y2) over the annular region
0 < a ≤

√
x2 + y2 ≤ b.

17. For what values of k, and to what value, does the integral∫∫
x2+y2≤1

d A

(x2 + y2)k
converge?

18. For what values of k, and to what value, does the integral∫∫
R

2

d A

(1+ x2 + y2)k
converge?

19. Evaluate
∫∫

D
xy d A, where D is the plane region satisfying

x ≥ 0, 0 ≤ y ≤ x , and x2 + y2 ≤ a2.

20. Evaluate
∫∫

C
y d A, where C is the upper half of the cardioid

disk r ≤ 1+ cos θ .

21. Find the volume lying between the paraboloids
z = x2 + y2 and 3z = 4− x2 − y2.

22. Find the volume lying inside both the sphere
x2 + y2 + z2 = a2 and the cylinder x2 + y2 = ax .

23. Find the volume lying inside both the sphere
x2 + y2 + z2 = 2a2 and the cylinder x2 + y2 = a2.

24. Find the volume of the region lying above the xy-plane,
inside the cylinder x2 + y2 = 4 and below the plane
z = x + y + 4.

25.I Find the volume of the region lying inside all three of the
circular cylinders x2 + y2 = a2, x2 + z2 = a2, and
y2 + z2 = a2. Hint: Make a good sketch of the first octant
part of the region, and use symmetry whenever possible.

26. Find the volume of the region lying inside the circular
cylinder x2 + y2 = 2y and inside the parabolic cylinder
z2 = y.

27.I Many points are chosen at random in the disk
x2 + y2 ≤ 1. Find the approximate average value of the
distance from these points to the nearest side of the smallest
square that contains the disk.

28.I Find the average value of x over the segment of the disk
x2 + y2 ≤ 4 lying to the right of x = 1. What is the centroid
of the segment?

29. Find the volume enclosed by the ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1.

30. Find the volume of the region in the first octant below the
paraboloid

z = 1− x2

a2 −
y2

b2 .

Hint: Use the change of variables x = au, y = bv .

31.I Evaluate
∫∫
|x |+|y|≤a

ex+y d A.

32. Find
∫∫

P
(x2 + y2) d A, where P is the parallelogram

bounded by the lines x + y = 1, x + y = 2, 3x + 4y = 5,
and 3x + 4y = 6.

33. Find the area of the region in the first quadrant bounded by
the curves xy = 1, xy = 4, y = x , and y = 2x .

34. Evaluate
∫∫

R
(x2 + y2) d A, where R is the region in the first

quadrant bounded by y = 0, y = x , xy = 1, and
x2 − y2 = 1.

35.I Let T be the triangle with vertices (0, 0), (1, 0), and (0, 1).

Evaluate the integral
∫∫

T
e(y−x)/(y+x) d A,

(a) by transforming to polar coordinates, and

(b) by using the transformation u = y − x , v = y + x .

36. Use the method of Example 7 to find the area of the region
inside the ellipse 4x2 + 9y2 = 36 and above the line
2x + 3y = 6.

37.A (The error function) The error function, Erf(x), is defined
for x ≥ 0 by

Erf(x) = 2√
π

∫ x

0
e−t2

dt.

Show that

(
Erf(x)

)2

= 4

π

∫ π/4

0

(
1− e−x2/ cos2 θ

)
dθ .

Hence deduce that Erf(x) ≥
√

1− e−x2 .
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38.A (The gamma and beta functions) The gamma function
�(x) and the beta function B(x, y) are defined by

�(x) =
∫ ∞

0
t x−1e−t dt, (x > 0),

B(x, y) =
∫ 1

0
t x−1(1− t)y−1 dt, (x > 0, y > 0).

The gamma function satisfies

�(x + 1) = x�(x) and

�(n + 1) = n!, (n = 0, 1, 2, . . .).

Deduce the following further properties of these functions:

(a) �(x) = 2
∫ ∞

0
s2x−1e−s2

ds, (x > 0),

(b) �

(
1

2

)
= √π, �

(
3

2

)
= 1

2

√
π ,

(c) If x > 0 and y > 0, then

B(x, y) = 2
∫ π/2

0
cos2x−1 θ sin2y−1 θ dθ,

(d) B(x, y) = �(x)�(y)

�(x + y)
.
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E X E R C I S E S 14.5
In Exercises 1–12, evaluate the triple integrals over the indicated
region. Be alert for simplifications and auspicious orders of
iteration.

1.
∫∫∫

R
(1+ 2x − 3y) dV , over the box −a ≤ x ≤ a,

−b ≤ y ≤ b, −c ≤ z ≤ c

2.
∫∫∫

B
xyz dV , over the box B given by 0 ≤ x ≤ 1,

−2 ≤ y ≤ 0, 1 ≤ z ≤ 4

3.
∫∫∫

D
(3+ 2xy) dV , over the solid hemispherical dome D

given by x2 + y2 + z2 ≤ 4 and z ≥ 0

4.
∫∫∫

R
x dV , over the tetrahedron bounded by the coordinate

planes and the plane
x

a
+ y

b
+ z

c
= 1

5.
∫∫∫

R
(x2 + y2) dV , over the cube 0 ≤ x, y, z ≤ 1

6.
∫∫∫

R
(x2 + y2 + z2) dV , over the cube of Exercise 5

7.
∫∫∫

R
(xy + z2) dV , over the set 0 ≤ z ≤ 1− |x | − |y|

8.
∫∫∫

R
yz2e−xyz dV , over the cube 0 ≤ x, y, z ≤ 1

9.
∫∫∫

R
sin(πy3) dV , over the pyramid with vertices (0, 0, 0),

10.

(0, 1, 0), (1, 1, 0), (1, 1, 1), and (0, 1, 1)∫∫∫
y dV , over that part of the cube 0 ≤ x, y, z ≤ 1 lying

R

above the plane y + z = 1 and below the plane
x + y + z = 2

11.
∫∫∫

R

1

(x + y + z)3
dV , over the region bounded by the six

12.

planes z = 1, z = 2, y = 0, y = z, x = 0, and x = y + z∫∫∫
R

cos x cos y cos z dV , over the tetrahedron defined by

x ≥ 0, y ≥ 0, z ≥ 0, and x + y + z ≤ π

13. Evaluate
∫∫∫

R
3

e−x2−2y2−3z2
dV . Hint: Use the result of

Example 4 of Section 14.4.

14. Find the volume of the region lying inside the cylinder
x2 + 4y2 = 4, above the xy-plane, and below the plane
z = 2 x .

15. Find

+∫∫∫
T

x dV , where T is the tetrahedron bounded by the

planes x = 1, y = 1, z = 1, and x + y + z = 2.

16. Sketch the region R in the first octant of 3-space that has
finite volume and is bounded by the surfaces x = 0, z = 0,
x + y = 1, and z = y2. Write six different iterations of the
triple integral of f (x, y, z) over R.

In Exercises 17–20, express the given iterated integral as a triple
integral and sketch the region over which it is taken. Reiterate the
integral, so that the outermost integral is with respect to x and the
innermost is with respect to z.

17.
0

dz
0

dy
∫ 1 ∫ 1−z ∫ 1

0
f (x, y, z) dx

18.
∫ 1

0
dz
∫ 1

z
dy
∫ y

f (x, y, z) dx

19.
∫ 1

0
dz
∫ 1

z
dx

0∫ x−z

0
f (x, y, z) dy

20.
∫ 1

0
dy
∫ √1−y2

0
dz
∫ 1

y2+z2
f (x, y, z) dx

21. Repeat Exercise 17 using the method of Example 6.

22. Repeat Exercise 18 using the method of Example 6.

23. Repeat Exercise 19 using the method of Example 6.

24. Repeat Exercise 20 using the method of Example 6.

25. Rework Example 5 using the method of Example 6.

26. Rework Example 6 using the method of Example 5.

In Exercises 27–28, evaluate the given iterated integral by
reiterating it in a different order. (You will need to make a good
sketch of the region.)

I27.
∫ 1

0
dz
∫ 1

z
dx
∫ x

0
ex3

dy

I28.
∫ 1

0
dx
∫ 1−x

0
dy
∫ 1

y

sin(π z)

z(2− z)
dz

A29. Define the average value of an integrable function f (x, y, z)
over a region R of 3-space. Find the average value of
x2 + y2 + z2 over the cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0 ≤ z ≤ 1.

A30. State a Mean-Value Theorem for triple integrals analogous to
Theorem 3 of Section 14.3. Use it to prove that if f (x, y, z)
is continuous near the point (a, b, c) and if Bε(a, b, c) is the
ball of radius ε centred at (a, b, c), then

lim
ε→0

3

4πε3

∫∫∫
Bε (a,b,c)

f (x, y, z) dV = f (a, b, c).
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E X E R C I S E S 14.6
In Exercises 1–9, find the volumes of the indicated regions.

1. Inside the cone z =
√

x2 + y2 and inside the sphere
x2 + y2 + z2 = a2

2. Above the surface z = (x2 + y2)1/4 and inside the sphere
x2 + y2 + z2 = 2

3. Between the paraboloids z = 10− x2 − y2 and
z = 2(x2 + y2 − 1)

4. Inside the paraboloid z = x2 + y2 and inside the sphere
x2 + y2 + z2 = 12

5. Above the xy-plane, inside the cone z = 2a −
√

x2 + y2,
and inside the cylinder x2 + y2 = 2ay

6. Above the xy-plane, under the paraboloid z = 1− x2 − y2,
and in the wedge −x ≤ y ≤ √3x

7. In the first octant, between the planes y = 0 and y = x , and

inside the ellipsoid
x2

a2 +
y2

b2 +
z2

c2 = 1. Hint: Use the

change of variables suggested in Example 1.

8. Bounded by the hyperboloid
x2

a2 +
y2

b2 −
z2

c2 = 1 and the

planes z = −c and z = c

9. Above the xy-plane and below the paraboloid

z = 1− x2

a2 −
y2

b2

10. Evaluate
∫∫∫

R
(x2 + y2 + z2) dV , where R is the cylinder

0 ≤ x2 + y2 ≤ a2, 0 ≤ z ≤ h.

11. Find
∫∫∫

B
(x2 + y2) dV , where B is the ball given by

x2 + y2 + z2 ≤ a2.

12. Find
∫∫∫

B
(x2 + y2 + z2) dV , where B is the ball of

Exercise 11.

13. Find
∫∫∫

R
(x2 + y2 + z2) dV , where R is the region that lies

above the cone z = c
√

x2 + y2 and inside the sphere
x2 + y2 + z2 = a2.

14. Evaluate
∫∫∫

R
(x2 + y2) dV over the region R of

Exercise 13.

15. Find
∫∫∫

R
z dV , over the region R satisfying

x2 + y2 ≤ z ≤
√

2− x2 − y2.

16. Find
∫∫∫

R
x dV and

∫∫∫
R

z dV , over that part of the

hemisphere 0 ≤ z ≤
√

a2 − x2 − y2 that lies in the first
octant.

17.I Find
∫∫∫

R
x dV and

∫∫∫
R

z dV over that part of the cone

0 ≤ z ≤ h

(
1−

√
x2 + y2

a

)

that lies in the first octant.

18.I Find the volume of the region inside the ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1 and above the plane z = b − y.

19. Show that for cylindrical coordinates the Laplace equation

∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2 = 0

is given by

∂2u

∂r2 +
1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2 +
∂2u

∂z2 = 0.

20.I Show that in spherical coordinates the Laplace equation is
given by

∂2u

∂R2+
2

R

∂u

∂R
+ cotφ

R2

∂u

∂φ
+ 1

R2

∂2u

∂φ2+
1

R2 sin2 φ

∂2u

∂θ2 = 0.

21.I If x , y, and z are functions of u, v , and w with continuous
first partial derivatives and nonvanishing Jacobian at
(u, v, w), show that they map an infinitesimal volume
element in uvw-space bounded by the coordinate planes u,
u + du, v , v + dv , w, and w + dw into an infinitesimal
“parallelepiped” in xyz-space having volume

dx dy dz =
∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw.

Hint: Adapt the two-dimensional argument given in
Section 14.4. What three vectors from the point
P = (x(u, v, w), y(u, v, w), z(u, v, w)) span the
parallelepiped?
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E X E R C I S E S 15.1
In Exercises 1–8, sketch the given plane vector field and
determine its field lines.

1. F(x, y) = x i+ xj 2. F(x, y) = x i+ yj

3. F(x, y) = yi+ xj 4. F(x, y) = i+ sin x j

5. F(x, y) = ex i+ e−x j 6. F(x, y) = ∇(x2 − y)

7. F(x, y) = ∇ ln(x2 + y2) 8. F(x, y) = cos y i− cos x j

In Exercises 9–16, describe the streamlines of the given velocity
fields.

9. v(x, y, z) = yi− yj− yk

10. v(x, y, z) = x i+ yj− xk

11. v(x, y, z) = yi− xj+ k

12. v(x, y, z) = x i+ yj
(1+ z2)(x2 + y2)

13. v(x, y, z) = xzi+ yzj+ xk

14. v(x, y, z) = exyz(x i+ y2j+ zk)

15. v(x, y) = x2i− yj

16.I v(x, y) = x i+ (x + y)j Hint: Let y = xv(x).

In Exercises 17–20, determine the field lines of the given polar
vector fields.

17. F = r̂+ r θ̂ 18. F = r̂+ θ θ̂

19. F = 2r̂+ θ θ̂ 20. F = r r̂− θ̂

21. Consider the Van der Pol equation with μ = 1, so the

corresponding vector field is F = yi+
(
−x + y(1− x2)

)
j.

Use V (x, y) = x2 − xy + y2 as in Example 7 to determine
the stability of the the fixed point (0, 0).

866 CHAPTER 15 Vector Fields

22. Consider the vector field of the Van der Pol equation when
μ = 0. Use the Liapunov function, V (x, y) = x2 + y2, to
attempt to determine the stability of the fixed point (0,0).
Explain the result.

23. In Example 7, using the simpler Liapunov function,
V (x, y) = x2 + y2, we found V ′ = 2y2(x2 − 1) ≤ 0. This
was not sufficient to establish asymptotic stability in itself
because V ′ = 0 occurs when y = 0. Zeros of V ′ form a
curve, in this case given by the entire x axis, which all occur
when x ′ = 0. Curves defined by one component of the
vector field vanishing are known as nulclines. The zeros of

V ′ occur on one nulcline (i.e., y = 0). Write an expression
for another nulcline of the Van der Pol vector field of
Example 7.

24. Give an alternative solution to Example 7 by using the fact
that the simpler Liapunov function in the previous exercise is
given by V = r2 in polar coordinates. Show explicitly that
all trajectories of the Van der Pol field (for μ = −1) crossing
the x axis stop moving toward (0, 0), by showing that r(t)
has a critical point. Then classify the associated critical point
of r(t) to demonstrate asymptotic stability.
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E X E R C I S E S 15.2

In Exercises 1–6, determine whether the given vector field is
conservative, and find a potential if it is.

1. F(x, y, z) = x i− 2yj+ 3zk

2. F(x, y, z) = yi+ xj+ z2k

3. F(x, y) = x i− yj
x2 + y2 4. F(x, y) = x i+ yj

x2 + y2

5. F(x, y, z) = (2xy − z2)i+ (2yz + x2)j− (2zx − y2)k

6. F(x, y, z) = ex2+y2+z2
(xzi+ yzj+ xyk)

7. Find the three-dimensional vector field with potential

φ(r) = 1

|r− r0|2
.

8. Calculate ∇ ln |r|, where r = x i+ yj+ zk.

9.I Show that the vector field

F(x, y, z) = 2x

z
i+ 2y

z
j− x2 + y2

z2 k

is conservative, and find its potential. Describe the
equipotential surfaces. Find the field lines of F.

10.I Repeat Exercise 9 for the field

F(x, y, z) = 2x

z
i+ 2y

z
j+
(

1− x2 + y2

z2

)
k.

11.I Find the velocity field due to two sources of strength m, one
located at (0, 0, 
) and the other at (0, 0,−
). Where is the
velocity zero? Find the velocity at any point (x, y, 0) in the
xy-plane. Where in the xy-plane is the speed greatest?

12.I Find the velocity field for a system consisting of a source of
strength 2 at the origin and a sink of strength 1 at (0, 0, 1).
Show that the velocity is vertical at all points of a certain
sphere. Sketch the streamlines of the flow.

Exercises 13–18 provide an analysis of two-dimensional sources
and dipoles similar to that developed for three dimensions in the
text.

13. In 3-space filled with an incompressible fluid, we say that the
z-axis is a line source of strength m if every interval �z
along that axis emits fluid at volume rate dV/dt = 2πm�z.
The fluid then spreads out symmetrically in all directions
perpendicular to the z-axis. Show that the velocity field of
the flow is

v = m

x2 + y2 (x i+ yj).

14. The flow in Exercise 13 is two-dimensional because v
depends only on x and y and has no component in the z
direction. Regarded as a plane vector field, it is the field of a
two-dimensional point source of strength m located at the
origin (i.e., fluid is emitted at the origin at the areal rate
d A/dt = 2πm). Show that the vector field is conservative,
and find a potential function φ(x, y) for it.

15.I Find the potential, φ, and the field, F = ∇φ, for a
two-dimensional dipole at the origin, with axis in the y
direction and dipole moment μ. Such a dipole is the limit of
a system consisting of a source of strength m at (0, 
/2) and
a sink of strength m at (0,−
/2), as 
→ 0 and m →∞
such that m
 = μ.

16. Show that the equipotential curves of the two-dimensional
dipole in Exercise 15 are circles tangent to the x-axis at the
origin.

17.I Show that the streamlines (field lines) of the two-dimensional
dipole in Exercises 15 and 16 are circles tangent to the y-axis
at the origin. Hint: It is possible to do this geometrically. If
you choose to do it by setting up a differential equation, you
may find the change of dependent variable

y = vx,
dy

dx
= v + x

dv

dx

useful for integrating the equation.

18.I Show that the velocity field of a line source of strength 2m
can be found by integrating the (three-dimensional) velocity
field of a point source of strength m dz at (0, 0, z) over the
whole z-axis. Why does the integral correspond to a line
source of strength 2m rather than strength m? Can the
potential of the line source be obtained by integrating the
potentials of the point sources?

19. Show that the gradient of a function expressed in terms of
polar coordinates in the plane is

∇φ(r, θ) = ∂φ

∂r
r̂+ 1

r

∂φ

∂θ
θ̂.

(This is a repeat of Exercise 16 in Section 12.7.)

20. Use the result of Exercise 19 to show that a necessary
condition for the vector field

F(r, θ) = Fr (r, θ)r̂+ Fθ (r, θ)θ̂

(expressed in terms of polar coordinates) to be conservative
is that

∂Fr

∂θ
− r

∂Fθ
∂r
= Fθ .

21. Show that F = r sin 2θ r̂+ r cos 2θ θ̂ is conservative, and find
a potential for it.

22. For what values of the constants α and β is the vector field

F = r2 cos θ r̂+ αrβ sin θ θ̂

conservative? Find a potential for F if α and β have these
values.
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E X E R C I S E S 15.3
In Exercises 1–2 evaluate the given line integral over the
specified curve C.

1.
∫

C

(x + y) ds, r = at i+ btj+ ctk, 0 ≤ t ≤ m.

2.
∫

C

y ds, r = t2i+ tj+ t2k, 0 ≤ t ≤ m.

3. Show that the curve C given by

r = a cos t sin t i+ a sin2 t j+ a cos t k, (0 ≤ t ≤ π
2 ),

lies on a sphere centred at the origin. Find
∫

C

z ds.

4. Let C be the conical helix with parametric equations

x = t cos t , y = t sin t , z = t , (0 ≤ t ≤ 2π). Find
∫

C

z ds.

5. Find the mass of a wire along the curve

r = 3t i+ 3t2j+ 2t3k, (0 ≤ t ≤ 1),

if the density at r(t) is 1+ t g/unit length.

6. Show that the curve C in Example 4 also has parametrization
x = cos t , y = sin t , z = cos2 t , (0 ≤ t ≤ π/2), and
recalculate the mass of the wire in that example using this
parametrization.

7. ∫inF d the moment of inertia about the z-axis (i.e., the value of

δ
C

(x2 + y2) ds), for a wire of constant density δ lying

along the curve C: r = et cos t i+ et sin tj+ tk, from t = 0
to t = 2π∫.

8. Evaluate
C

ez ds, where C is the curve in Exercise 7.

9. Find
∫

C

x2 ds along the line of intersection of the two planes

∫(x − y + z = 0 and x + y + 2z = 0, from the origin to the
point 3, 1,−2).

10. Find
C

√
1+ 4x2z2 ds, where C is the curve of intersection

of the surfaces x2 + z2 = 1 and y = x2.

11. Find the mass and centre of mass of a wire bent in the shape
of the circular helix x = cos t , y = sin t , z = t ,
(0 ≤ t ≤ 2π), if the wire has line density given by
δ(x, y, z) = z.

12.

13.

Repeat Exercise 11 for the part of the wire corresponding to
0 ≤ t ≤ π .

Find the moment of inertia about the y-axis of the curve
x = et , y = √2 t , z = e−t , (0 ≤ t ≤ 1), that is,∫

C

(x2 + z2) ds.

14. ∫thFind e centroid of the curve in Exercise 13.

I15. Find
C

x ds along the first octant part of the curve of

intersection of the cylinder x2 + y2 = a2 and the plane
z = x∫.

I16. Find
C

z ds along the part of the curve x2 + y2 + z2 = 1,

x + y = 1, where z ≥ 0.

I17. Find
∫

C

ds

(2y2 + 1)3/2 , where C is the parabola

18.
z2 = x2 + y2, x + z = 1. Hint: Use y = t as parameter.
Express a∫s a definite integral, but do not try to evaluate, the

value of xyz ds, where C is the curve y = x2, z = y2

C

from (0, 0, 0) to (2, 4, 16).

I19. The function

E(k, φ) =
∫ φ

0

√
1− k2 sin2 t dt

is called the elliptic integral function of the second
kind. The complete elliptic integral of the second kind is
the function E(k) = E(k, π/2). In terms of these functions,
express the length of one complete revolution of the elliptic
helix

x = a cos t, y = b sin t, z = ct,

where 0 < a < b. What is the length of that part of the helix
lying between t = 0 and t = T , where 0 < T < π/2?

I20. Evaluate
∫

L

ds

x2 + y2 , where L is the entire straight line with

equation Ax + By = C , (C 
= 0). Hint: Use the symmetry
of the integrand to replace the line with a line having a
simpler equation but giving the same value to the integral.
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In Exercises 1–6, evaluate the line integral of the tangential
component of the given vector field along the given curve.

1. F(x, y) = xyi− x2j along y = x2 from (0, 0) to (1, 1)

2. F(x, y) = cos x i− yj along y = sin x from (0, 0) to (π, 0)

3. F(x, y, z) = yi+ zj− xk along the straight line from
(0, 0, 0) to (1, 1, 1)

4. F(x, y, z) = zi− yj+ 2xk along the curve x = t , y = t2,
z = t3 from (0, 0, 0) to (1, 1, 1)

5. F(x, y, z) = yzi+ xzj+ xyk from (−1, 0, 0) to (1, 0, 0)
along either direction of the curve of intersection of the
cylinder x2 + y2 = 1 and the plane z = y

6. F(x, y, z) = (x − z)i+ (y − z)j− (x + y)k along the
polygonal path from (0, 0, 0) to (1, 0, 0) to (1, 1, 0) to
(1, 1, 1)

7. Find the work done by the force field

F = (x + y)i+ (x − z)j+ (z − y)k

in moving an object from (1, 0,−1) to (0,−2, 3) along any
smooth curve.

8. Evaluate
∮

C

x2 y2 dx + x3 y dy counterclockwise around the

square with vertices (0, 0), (1, 0), (1, 1), and (0, 1).

9. Evaluate∫
C

ex+y sin(y + z) dx + ex+y
(

sin(y + z)+ cos(y + z)

)
dy

+ ex+y cos(y + z) dz

along the straight line segment from (0,0,0) to (1, π4 ,
π
4 ).

10. The field F = (axy + z)i+ x2j+ (bx + 2z)k is conservative.
Find a and b, and find a potential for F. Also, evaluate∫
C

F • dr, where C is the curve from (1, 1, 0) to (0, 0, 3) that
lies on the intersection of the surfaces 2x + y + z = 3 and
9x2 + 9y2 + 2z2 = 18 in the octant x ≥ 0, y ≥ 0, z ≥ 0.

11. Determine the values of A and B for which the vector field

F = Ax ln z i+ By2z j+
(

x2

z
+ y3

)
k

is conservative. If C is the straight line from (1, 1, 1) to
(2, 1, 2), find∫

C

2x ln z dx + 2y2z dy + y3 dz.

12. Find the work done by the force field

F = (y2 cos x + z3)i+ (2y sin x − 4)j+ (3xz2 + 2)k

in moving a particle along the curve x = sin−1t , y = 1− 2t ,
z = 3t − 1, (0 ≤ t ≤ 1).

13. If C is the intersection of z = ln(1+ x) and y = x from
(0, 0, 0) to (1, 1, ln 2), evaluate∫

C

(
2x sin(πy)− ez

)
dx +

(
πx2 cos(πy)− 3ez

)
dy − xez dz.

14.A Is each of the following sets a domain? a connected domain?
a simply connected domain?

(a) the set of points (x, y) in the plane such that x > 0 and
y ≥ 0

(b) the set of points (x, y) in the plane such that x = 0 and
y ≥ 0

(c) the set of points (x, y) in the plane such that x 
= 0 and
y > 0

(d) the set of points (x, y, z) in 3-space such that
x2 > 1

(e) the set of points (x, y, z) in 3-space such that
x2 + y2 > 1

(f) the set of points (x, y, z) in 3-space such that
x2 + y2 + z2 > 1

In Exercises 15–19, evaluate the closed line integrals

(a)
∮

C

x dy , (b)
∮

C

y dx

around the given curves, all oriented counterclockwise.

15. The circle x2 + y2 = a2

16. The ellipse
x2

a2 +
y2

b2 = 1

17. The boundary of the half-disk x2 + y2 ≤ a2, y ≥ 0

18. The boundary of the square with vertices (0, 0), (1, 0),
(1, 1), and (0, 1)

19. The triangle with vertices (0, 0), (a, 0), and (0, b)

20. On the basis of your results for Exercises 15–19, guess the
values of the closed line integrals

(a)
∮

C

x dy , (b)
∮

C

y dx

for any non–self-intersecting closed curve in the xy-plane.
Prove your guess in the case that C bounds a region of the
plane that is both x-simple and y-simple. (See Section 14.2.)

21. If f and g are scalar fields with continuous first partial
derivatives in a connected domain D, show that∫

C

f ∇g • dr+
∫

C

g∇ f • dr = f (Q)g(Q)− f (P)g(P)

for any piecewise smooth curve in D from P to Q.

22. Evaluate

1

2π

∮
C

−y dx + x dy

x2 + y2

(a) counterclockwise around the circle x2 + y2 = a2,

(b) clockwise around the square with vertices (−1,−1),
(−1, 1), (1, 1), and (1,−1),

(c) counterclockwise around the boundary of the region
1 ≤ x2 + y2 ≤ 4, y ≥ 0.
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23.A Review Example 5 in Section 15.2 in which it was shown that

∂

∂y

( −y

x2 + y2

)
= ∂

∂x

(
x

x2 + y2

)
,

for all (x, y) 
= (0, 0). Why does this result, together with
that of Exercise 22, not contradict the final assertion in the
remark following Theorem 1?

24.I (Winding number) Let C be a piecewise smooth curve in
the xy-plane that does not pass through the origin. Let
θ = θ(x, y) be the polar angle coordinate of the point
P = (x, y) on C, not restricted to an interval of length 2π ,
but varying continuously as P moves from one end of C to

the other. As in Example 5 of Section 15.2, it happens that

∇θ = − y

x2 + y2 i+ x

x2 + y2 j.

If, in addition, C is a closed curve, show that

w(C) = 1

2π

∮
C

x dy − y dx

x2 + y2

has an integer value. w is called the winding number of C

about the origin.
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1. Verify that on the curve with polar equation r = g(θ) the arc

length element is given by

ds =
√
(g(θ))2 + (g′(θ))2 dθ.

What is the area element on the vertical cylinder given in
terms of cylindrical coordinates by r = g(θ)?

2. Verify that on the spherical surface x2 + y2 + z2 = a2 the
area element is given in terms of spherical coordinates by
d S = a2 sinφ dφ dθ .

3. Find the area of the part of the plane Ax + By + Cz = D
lying inside the elliptic cylinder

x2

a2 +
y2

b2 = 1.

4. Find the area of the part of the sphere x2 + y2 + z2 = 4a2

that lies inside the cylinder x2 + y2 = 2ay.

5. State formulas for the surface area element d S for the surface
with equation F(x, y, z) = 0 valid for the case where the
surface has a one-to-one projection on (a) the xz-plane and
(b) the yz-plane.

6. Repeat the area calculation of Example 8 by projecting the
part of the surface shown in Figure 15.23 onto the yz-plane
and using the formula in Exercise 5(b).

7. Find
∫∫

S

x d S over the part of the parabolic cylinder

z = x2/2 that lies inside the first octant part of the cylinder
x2 + y2 = 1.

8. Find the area of the part of the cone z2 = x2 + y2 that lies
inside the cylinder x2 + y2 = 2ay.

9. Find the area of the part of the cylinder x2 + y2 = 2ay that
lies outside the cone z2 = x2 + y2.

10. Find the area of the part of the cylinder x2 + z2 = a2 that
lies inside the cylinder y2 + z2 = a2.

11.A A circular cylinder of radius a is circumscribed about a
sphere of radius a so that the cylinder is tangent to the sphere
along the equator. Two planes, each perpendicular to the axis
of the cylinder, intersect the sphere and the cylinder in
circles. Show that the area of that part of the sphere between
the two planes is equal to the area of the part of the cylinder
between the two planes. Thus, the area of the part of a sphere
between two parallel planes that intersect it depends only on
the radius of the sphere and the distance between the planes,
and not on the particular position of the planes.

12.I Let 0 < a < b. In terms of the elliptic integral functions
defined in Exercise 19 of Section 15.3, find the area of that
part of each of the cylinders x2 + z2 = a2 and y2 + z2 = b2

that lies inside the other cylinder.

13. Find
∫∫

S

y d S, where S is the part of the plane z = 1+ y

that lies inside the cone z =
√

2(x2 + y2).

14. Find
∫∫

S

y d S, where S is the part of the cone

z =
√

2(x2 + y2) that lies below the plane z = 1+ y.

15. Find
∫∫

S

xz d S, where S is the part of the surface z = x2 that

lies in the first octant of 3-space and inside the paraboloid
z = 1− 3x2 − y2.

16. Find the mass of the part of the surface z = √2xy that lies
above the region 0 ≤ x ≤ 5, 0 ≤ y ≤ 2, if the areal density
of the surface is σ(x, y, z) = kz.

17. Find the total charge on the surface

r = eu cos vi+ eu sin vj+ uk, (0 ≤ u ≤ 1, 0 ≤ v ≤ π),

if the charge density on the surface is δ =
√

1+ e2u .

Exercises 18–19 concern spheroids, which are ellipsoids with
two of their three semi-axes equal, say a = b:

x2

a2 +
y2

a2 +
z2

c2 = 1.

I18. Find the surface area of a prolate spheroid, where
0 < a < c. A prolate spheroid has its two shorter semi-axes
equal, like an American “pro football.”

I19. Find the surface area of an oblate spheroid, where
0 < c < a. An oblate spheroid has its two longer semi-axes
equal, like the earth.

I20. Describe the parametric surface

x = au cos v, y = au sin v, z = bv,

(0 ≤ u ≤ 1, 0 ≤ v ≤ 2π), and find its area.

I21. Evaluate
∫∫

d S

(x2 + y2 + z2)3/2 , where P is the plane with
P

equation Ax + By + Cz = D, (D 
= 0).

22. A spherical shell of radius a is centred at the origin. Find the
centroid of that part of the sphere that lies in the first octant.

23. Find the centre of mass of a right-circular conical shell of
base radius a, height h, and constant areal density σ .

I24. Find the gravitational attraction of a hemispherical shell of
radius a and constant areal density σ on a mass m located at
the centre of the base of the hemisphere.

I25. Find the gravitational attraction of a circular cylindrical shell
of radius a, height h, and constant areal density σ on a mass
m located on the axis of the cylinder b units above the base.

In Exercises 26–28, find the moment of inertia and radius of
gyration of the given object about the given axis. Assume
constant areal density σ in each case.

26. A cylindrical shell of radius a and height h about the axis of
the cylinder

27. A spherical shell of radius a about a diameter

28. A right-circular conical shell of base radius a and height h
about the axis of the cone

29. With what acceleration will the spherical shell of Exercise 27
roll down a plane inclined at angle α to the horizontal?
(Compare your result with that of Example 4(b) of
Section 14.7.)
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1. Find the flux of F = x i+ zj out of the tetrahedron bounded

by the coordinate planes and the plane x + 2y + 3z = 6.

2. Find the flux of F = x i+ yj+ zk outward across the sphere
x2 + y2 + z2 = a2.

3. Find the flux of the vector field of Exercise 2 out of the
surface of the box 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c.

4. Find the flux of the vector field F = yi+ zk out across the
boundary of the solid cone 0 ≤ z ≤ 1−

√
x2 + y2.

5. Find the flux of F = x i+ yj+ zk upward through the part of
the surface z = a − x2 − y2 lying above plane z = b < a.

6. Find the flux of F = x i+ xj+ k upward through the part of
the surface z = x2 − y2 inside the cylinder x2 + y2 = a2.

7. Find the flux of F = y3i+ z2j+ xk downward through the
part of the surface z = 4− x2 − y2 that lies above the plane
z = 2x + 1.

8. Find the flux of F = z2k upward through the part of the
sphere x2 + y2 + z2 = a2 in the first octant of 3-space.

9. Find the flux of F = x i+ yj upward through the part of the
surface z = 2− x2 − 2y2 that lies above the xy-plane.

10. Find the flux of F = 2x i+ yj+ zk upward through the

surface r = u2vi+ uv2j+ v3k, (0 ≤ u ≤ 1, 0 ≤ v ≤ 1).

11. Find the flux of F = x i+ yj+ z2k upward through the
surface u cos v i+ u sin v j+ u k, (0 ≤ u ≤ 2, 0 ≤ v ≤ π ).

12. Find the flux of F = yzi− xzj+ (x2 + y2)k upward through
the surface r = eu cos v i+ eu sin v j+ u k, where 0 ≤ u ≤ 1
and 0 ≤ v ≤ π .

13. Find the flux of F = mr/|r|3 out of the surface of the cube
−a ≤ x, y, z ≤ a.

14.I Find the flux of the vector field of Exercise 13 out of the box
1 ≤ x, y, z ≤ 2. Note: This problem can be solved very
easily using the Divergence Theorem of Section 16.4; the
required flux is, in fact, zero. However, the object here is to
do it by direct calculation of the surface integrals involved,
and as such it is quite difficult. By symmetry, it is sufficient
to evaluate the net flux out of the cube through any one of the
three pairs of opposite faces; that is, you must calculate the
flux through only two faces, say z = 1 and z = 2. Be
prepared to work very hard to evaluate these integrals! When
they are done, you may find the identities

2 arctan a = arctan
(

2a/(1− a2)
)

and

arctan a + arctan (1/a)π/2 useful for showing that the net

flux is zero.

15. Define the flux of a plane vector field across a piecewise
smooth curve. Find the flux of F = x i+ yj outward across

(a) the circle x2 + y2 = a2, and

(b) the boundary of the square −1 ≤ x, y ≤ 1.

16. Find the flux of F = −(x i+ yj)/(x2 + y2) inward across
each of the two curves in the previous exercise.

ˆ17. If S is a smooth, oriented surface in 3-space and N is the unit

ˆ
vector field determining the orientation of S, show that the
flux of N across S is the area of S.

I18. The Divergence Theorem presented in Section 16.4 implies
that the flux of a constant vector field across any oriented,
piecewise smooth, closed surface is zero. Prove this now for
(a) a rectangular box, and (b) a sphere.
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Key Ideas
• What do the following terms and phrases mean?
� vector field

� scalar field

� field line

� conservative field

� scalar potential

� equipotential

� a source

� a dipole

� connected domain

� simply connected

� parametric surface

� orientable surface

� the line integral of f along curve C

� the line integral of the tangential component of F along C

� the flux of a vector field through a surface

• How are the field lines of a conservative field related to
its equipotential curves or surfaces?
• How is a line integral of a scalar field calculated?
• How is a line integral of the tangential component of a

vector field calculated?
• When is a line integral between two points independent

of the path joining those points?
• How is a surface integral of a scalar field calculated?
• How do you calculate the flux of a vector field through

a surface?

Review Exercises
1. Find

∫
C

1

y
ds, where C is the curve

x = t, y = 2et , z = e2t , (−1 ≤ t ≤ 1).

2. Let C be the part of the curve of intersection of the surfaces
z = x + y2 and y = 2x from the origin to the point (2, 4, 18).

Evaluate
∫

C

2y dx + x dy + 2 dz.

3. Find
∫∫

S

x d S, where S is that part of the cone z =
√

x2 + y2

in the region 0 ≤ x ≤ 1− y2.

4. Find
∫∫

S

xyz d S over the part of the plane x+ y+ z = 1 lying

in the first octant.

5. Find the flux of x2 yi − 10xy2j upward through the surface
z = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

6. Find the flux of x i + yj + zk downward through the part of
the plane x + 2y + 3z = 6 lying in the first octant.

7. A bead of mass m slides down a wire in the shape of the curve
x = a sin t, y = a cos t, z = bt , where 0 ≤ t ≤ 6π .

(a) What is the work done by the gravitational force
F = −mgk on the bead during its descent?

(b) What is the work done against a resistance of constant
magnitude R which directly opposes the motion of the
bead during its descent?

8. For what values of the constants a, b, and c can you determine
the value of the integral I of the tangential component of
F = (axy+3yz)i+ (x2+3xz+by2z)j+ (bxy+cy3)k along
a curve from (0, 1,−1) to (2, 1, 1) without knowing exactly
which curve? What is the value of the integral?

9. Let F = (x2/y)i+ yj+ k.

(a) Find the field line of F that passes through (1, 1, 0) and
show that it also passes through (e, e, 1).

(b) Find
∫

C

F • dr, where C is the part of the field line in (a)

from (1, 1, 0) to (e, e, 1).

10. Consider the vector fields

F = (1+ x)ex+y i+ (xex+y + 2y)j− 2zk,

G = (1+ x)ex+y i+ (xex+y + 2z)j− 2yk.

(a) Show that F is conservative by finding a potential for it.

(b) Evaluate
∫

C

G • dr, where C is given by

r = (1− t)et i+ tj+ 2tk, (0 ≤ t ≤ 1),

by taking advantage of the similarity between F and G.

11. Find a plane vector field F(x, y) that satisfies the following
conditions:

(i) The field lines of F are the curves xy = C .

(ii) |F(x, y)| = 1 if (x, y) 
= (0, 0).

(iii) F(1, 1) = (i− j)/
√

2.

(iv) F is continuous except at (0, 0).
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12. Let S be the part of the surface of the cylinder y2 + z2 = 16
that lies in the first octant and between the planes x = 0 and
x = 5. Find the flux of 3z2x i− xj− yk away from the x-axis
through S.

Challenging Problems
1.I Find the centroid of the surface

r = (2+ cos v)(cos ui+ sin uj)+ sin vk,

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ π . Describe this surface.

2.I A smooth surface S is given parametrically by

r = (cos 2u)(2+ v cos u)i

+ (sin 2u)(2+ v cos u)j+ v sin uk,

where 0 ≤ u ≤ 2π and −1 ≤ v ≤ 1. Show that for every
smooth vector field F on S,∫∫

S

F • N̂ d S = 0,

where N̂ = N̂(u, v) is a unit normal vector field on S that
depends continuously on (u, v). How do you explain this?
Hint: Try to describe what the surface S looks like.

3.I Recalculate the gravitational force exerted by a sphere of ra-
dius a and areal density σ centred at the origin on a point
mass located at (0, 0, b) by directly integrating the vertical
component of the force due to an area element d S, rather
than by integrating the potential as we did in the last part of
Section 15.5. You will have to be quite creative in dealing
with the resulting integral.
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In Exercises 1–11, calculate div F and curl F for the given
vector fields.

1. F = x i+ yj 2. F = yi+ xj

3. F = yi+ zj+ xk 4. F = yzi+ xzj+ xyk

5. F = x i+ xk 6. F = xy2i− yz2j+ zx2k

7. F = f (x)i+ g(y)j+ h(z)k 8. F = f (z)i− f (z)j

9. F(r, θ) = r i+ sin θ j, where (r, θ) are polar coordinates in
the plane

10. F = r̂ = cos θ i+ sin θ j

11. F = θ̂ = − sin θ i+ cos θ j

12.I Let F be a smooth, three-dimensional vector field. If Ba,b,c
is the surface of the box −a ≤ x ≤ a, −b ≤ y ≤ b,
−c ≤ z ≤ c, with outward normal N̂, show that

lim
a,b,c→0+

1

8abc

∫
©
∫

Ba,b,c

F • N̂ d S = ∇ • F(0, 0, 0).

13.I Let F be a smooth two-dimensional vector field. If Cε is the
circle of radius ε centred at the origin, and N̂ is the unit
outward normal to Cε , show that

lim
ε→0+

1

πε2

∮
Cε

F • N̂ ds = div F(0, 0).

14.I Prove Theorem 2 in the special case that Cε is the circle in
the xy-plane with parametrization x = ε cos θ , y = ε sin θ ,
(0 ≤ θ ≤ 2π). In this case N̂ = k. Hint: Expand F(x, y, z)
in a vector Taylor series about the origin as in the proof of
Theorem 1, and calculate the circulation of individual terms
around Cε .
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1. Evaluate
∮
C

(sin x + 3y2) dx + (2x − e−y2
) dy, where C is

the boundary of the half-disk x2 + y2 ≤ a2, y ≥ 0, oriented
counterclockwise.

2. Evaluate
∮
C

(x2 − xy) dx + (xy − y2) dy clockwise around

the triangle with vertices (0, 0), (1, 1), and (2, 0).

3. Evaluate
∮
C

(
x sin(y2)− y2

)
dx +

(
x2 y cos(y2)+ 3x

)
dy,

where C is the counterclockwise boundary of the trapezoid
with vertices (0,−2), (1,−1), (1, 1), and (0, 2).

4. Evaluate
∮
C

x2 y dx − xy2 dy, where C is the clockwise

boundary of the region 0 ≤ y ≤
√

9− x2.

5. Use a line integral to find the plane area enclosed by the
curve r = a cos3 t i+ b sin3 t j, (0 ≤ t ≤ 2π).

6. We deduced the two-dimensional Divergence Theorem from
Green’s Theorem. Reverse the argument and use the

two-dimensional Divergence Theorem to prove Green’s
Theorem.

7. Sketch the plane curve C: r = sin t i+ sin 2t j, (0 ≤ t ≤ 2π ).

Evaluate
∮
C

F • dr, where F = yex2
i+ x3eyj.

8. If C is the positively oriented boundary of a plane region R
having area A and centroid (x̄, ȳ), interpret geometrically the

line integral
∮
C

F • dr, where (a) F = x2j, (b) F = xyi,

and (c) F = y2i+ 3xyj.

9.I (Average values of harmonic functions) If u(x, y) is
harmonic in a domain containing a disk of radius r with
boundary Cr , then the average value of u around the circle is
the value of u at the centre. Prove this by showing that the
derivative of the average value with respect to r is zero using
the Divergence Theorem and the harmonicity of u, and the
fact that the limit of the average value as r → 0 is the value
of u at the centre.
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In Exercises 1–4, use the Divergence Theorem to calculate the
flux of the given vector field out of the sphere S with equation
x2 + y2 + z2 = a2, where a > 0.

1. F = x i− 2yj+ 4zk 2. F = yez i+ x2ezj+ xyk

3. F = (x2 + y2)i+ (y2 − z2)j+ zk

4. F = x3i+ 3yz2j+ (3y2z + x2)k

In Exercises 5–8, evaluate the flux of F = x2i+ y2j+ z2k
outward across the boundary of the given solid region.

5. The ball (x − 2)2 + y2 + (z − 3)2 ≤ 9

6. The solid ellipsoid x2 + y2 + 4(z − 1)2 ≤ 4

7. The tetrahedron x + y + z ≤ 3, x ≥ 0, y ≥ 0, z ≥ 0

8. The cylinder x2 + y2 ≤ 2y, 0 ≤ z ≤ 4

9. Let A be the area of a region D forming part of the surface of
a sphere of radius R centred at the origin, and let V be the
volume of the solid cone C consisting of all points on line
segments joining the centre of the sphere to points in D.

Show that V = 1

3
AR by applying the Divergence Theorem

to F = x i+ yj+ zk.

10. Let φ(x, y, z) = xy + z2. Find the flux of ∇φ upward
through the triangular planar surface S with vertices at
(a, 0, 0), (0, b, 0), and (0, 0, c).

11. A conical domain with vertex (0, 0, b) and axis along the
z-axis has as base a disk of radius a in the xy-plane. Find the
flux of

F = (x + y2)i+ (3x2 y + y3 − x3)j+ (z + 1)k

upward through the conical part of the surface of the domain.

12. Find the flux of F = (y + xz)i+ (y + yz)j− (2x + z2)k
upward through the first octant part of the sphere
x2 + y2 + z2 = a2.

13. Let D be the region x2 + y2 + z2 ≤ 4a2, x2 + y2 ≥ a2. The
surface S of D consists of a cylindrical part, S1, and a
spherical part, S2. Evaluate the flux of

F = (x + yz)i+ (y − xz)j+ (z − ex sin y)k

out of D through (a) the whole surface S, (b) the surface S1,
and (c) the surface S2.

14. Evaluate
∫∫

S

(3xz2i− xj− yk) • N̂ d S, where S is that part

of the cylinder y2 + z2 = 1 that lies in the first octant and
between the planes x = 0 and x = 1.

15. A solid region R has volume V and centroid at the point
(x̄, ȳ, z̄). Find the flux of

F = (x2 − x − 2y)i+ (2y2 + 3y − z)j− (z2 − 4z + xy)k

out of R through its surface.

16. The plane x + y + z = 0 divides the cube −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1, −1 ≤ z ≤ 1 into two parts. Let the lower part
(with one vertex at (−1,−1,−1)) be D. Sketch D. Note
that it has seven faces, one of which is hexagonal. Find the
flux of F = x i+ yj+ zk out of D through each of its faces.

17. Let F = (x2 + y + 2+ z2)i+ (ex2 + y2)j+ (3+ x)k. Let
a > 0, and let S be the part of the spherical surface
x2 + y2 + z2 = 2az + 3a2 that is above the xy-plane. Find
the flux of F outward across S.

18. A pile of wet sand having total volume 5π covers the disk
x2 + y2 ≤ 1, z = 0. The momentum of water vapour is
given by F = gradφ +μcurl G, where φ = x2 − y2 + z2 is
the water concentration, G = 1

3 (−y3i+ x3j+ z3k), and μ is
a constant. Find the flux of F upward through the top surface
of the sand pile.

In Exercises 19–29, D is a three-dimensional domain satisfying
the conditions of the Divergence Theorem, and S is its surface. N̂
is the unit outward (from D) normal field on S. The functions φ
and ψ are smooth scalar fields on D. Also, ∂φ/∂n denotes the
first directional derivative of φ in the direction of N̂ at any point
on S:

∂φ

∂n
= ∇φ • N̂.

19.A Show that
∫
©
∫
S

curl F • N̂ d S = 0, where F is an arbitrary

smooth vector field.

20.A Show that the volume V of D is given by

V = 1

3

∫
©
∫
S

(x i+ yj+ zk) • N̂ d S.

21.A If D has volume V , show that

r = 1

2V

∫
©
∫
S

(x2 + y2 + z2)N̂ d S

is the position vector of the centre of gravity of D.

22.A Show that
∫
©
∫
S

∇φ × N̂ d S = 0.

23.A If F is a smooth vector field on D, show that∫∫∫
D
φdiv F dV +

∫∫∫
D

∇φ • F dV =
∫
©
∫
S

φF • N̂ d S.

Hint: Use Theorem 3(b) from Section 16.2.

Properties of the Laplacian operator
24. If ∇

2φ = 0 in D and φ(x, y, z) = 0 on S, show that
φ(x, y, z) = 0 in D. Hint: Let F = ∇φ in Exercise 23.

25.A (Uniqueness for the Dirichlet problem) The Dirichlet
problem for the Laplacian operator is the boundary-value
problem{

∇
2u(x, y, z) = f (x, y, z) on D

u(x, y, z) = g(x, y, z) on S,

where f and g are given functions defined on D and S,
respectively. Show that this problem can have at most one
solution u(x, y, z). Hint: Suppose there are two solutions, u
and v , and apply Exercise 24 to their difference φ = u − v .
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26.A (The Neumann problem) If ∇
2φ = 0 in D and

∂φ/∂n = 0 on S, show that ∇φ(x, y, z) = 0 on D. The
Neumann problem for the Laplacian operator is the
boundary-value problem⎧⎨⎩∇

2u(x, y, z) = f (x, y, z) on D

∂

∂n
u(x, y, z) = g(x, y, z) on S,

where f and g are given functions defined on D and S,
respectively. Show that, if D is connected, then any two
solutions of the Neumann problem must differ by a constant
on D.

27.A Verify that
∫∫∫

D
∇

2φ dV =
∫
©
∫
S

∂φ

∂n
d S.

28.A Verify that∫∫∫
D

(
φ∇

2ψ − ψ∇
2φ

)
dV

=
∫
©
∫
S

(
φ
∂ψ

∂n
− ψ ∂φ

∂n

)
d S.

29.A By applying the Divergence Theorem to F = φc, where c is
an arbitrary constant vector, show that∫∫∫

D
∇φ dV =

∫
©
∫
S

φN̂ d S.

30.I Let P0 be a fixed point, and for each ε > 0 let Dε be a
domain with boundary Sε satisfying the conditions of the
Divergence Theorem. Suppose that the maximum distance
from P0 to points P in Dε approaches zero as ε → 0+. If
Dε has volume vol(Dε), show that

lim
ε→0+

1

vol(Dε)

∫
©
∫
Sε

F • N̂ d S = div F(P0).

This generalizes Theorem 1 of Section 16.1.
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1. Evaluate
∮
C

xy dx + yz dy + zx dz around the triangle with

vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1), oriented clockwise
as seen from the point (1, 1, 1).

2. Evaluate
∮
C

y dx − x dy + z2 dz around the curve C of

intersection of the cylinders z = y2 and x2 + y2 = 4,
oriented counterclockwise as seen from a point high on the
z-axis.

3. Evaluate
∫∫

S

curl F • N̂ d S, where S is the hemisphere

x2 + y2 + z2 = a2, z ≥ 0 with outward normal, and
F = 3yi− 2xzj+ (x2 − y2)k.

4. Evaluate
∫∫

S

curl F • N̂ d S, where S is the surface

x2 + y2 + 2(z − 1)2 = 6, z ≥ 0, N̂ is the unit outward (away
from the origin) normal on S, and

F = (xz − y3 cos z)i+ x3ezj+ xyz ex2+y2+z2
k.

5. Use Stokes’s Theorem to show that∮
C

y dx + z dy + x dz =
√

3πa2,

where C is the suitably oriented intersection of the surfaces
x2 + y2 + z2 = a2 and x + y + z = 0.

6. Evaluate
∮
C

F • dr around the curve

r = cos t i+ sin t j+ sin 2t k, (0 ≤ t ≤ 2π),

where

F = (ex − y3)i+ (ey + x3)j+ ezk.

Hint: Show that C lies on the surface z = 2xy.

7. Find the circulation of F = −yi+ x2j+ zk around the
oriented boundary of the part of the paraboloid
z = 9− x2 − y2 lying above the xy-plane and having normal
field pointing upward.

8. Evaluate
∮
C

F • dr, where

F = yex i+ (x2 + ex )j+ z2ezk,

and C is the curve

r(t) = (1+ cos t)i+ (1+ sin t)j+ (1− cos t − sin t)k

for 0 ≤ t ≤ 2π . Hint: Use Stokes’s Theorem, observing that
C lies in a certain plane and has a circle as its projection onto
the xy-plane. The integral can also be evaluated by using the
techniques of Section 15.4.

9. Let C1 be the straight line joining (−1, 0, 0) to (1, 0, 0), and
let C2 be the semicircle x2 + y2 = 1, z = 0, y ≥ 0. Let S be
a smooth surface joining C1 to C2 having upward normal,
and let

F = (αx2 − z)i+ (xy + y3 + z)j+ βy2(z + 1)k.

Find the values of α and β for which I =
∫∫

S

F • dS is

independent of the choice of S, and find the value of I for
these values of α and β.

10. Let C be the curve (x − 1)2 + 4y2 = 16, 2x + y + z = 3,
oriented counterclockwise when viewed from high on the
z-axis. Let

F = (z2 + y2 + sin x2)i+ (2xy + z)j)+ (xz + 2yz)k.

Evaluate
∮
C

F • dr.

A11. If C is the oriented boundary of surface S, and φ and ψ are
arbitrary smooth scalar fields, show that

∮
C

φ∇ψ • dr = −
∮
C

ψ∇φ • dr

=
∫∫

S

ˆ(∇φ × ∇ψ) • N d S.

Is ∇φ × ∇ψ solenoidal? Find a vector potential for it.

A12. Let C be a piecewise smooth, simple closed plane curve in
ˆR

3, which lies in a plane with unit normal N = ai+ bj+ ck
and has orientation inherited from that of the plane. Show
that the plane area enclosed by C is

1

2

∮
C

(bz − cy) dx + (cx − az) dy + (ay − bx) dz.

A13. Use Stokes’s Theorem to prove Theorem 2 of Section 16.1.
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1. (A Archimedes’ principle) A solid occupying region R with

surface S is immersed in a liquid of constant density ρ. The
pressure at depth h in the liquid is ρgh, so the pressure
satisfies ∇ p = ρg, where g is the (vector) constant
acceleration of gravity. Over each surface element d S on S

the pressure of the fluid exerts a force −pN̂ d S on the solid.

(a) Show that the resultant “buoyancy force” on the solid is

B = −
∫∫∫

R
ρg dV .

Thus, the buoyancy force has the same magnitude as,
and opposite direction to, the weight of the liquid
displaced by the solid. This is Archimedes’ principle.

(b) Extend the above result to the case where the solid is
only partly submerged in the fluid.

2. By breaking the vector F(G • N̂) into its separate
components and applying the Divergence Theorem to each
separately, show that∫
©
∫
S

F(G • N̂) d S =
∫∫∫

D

(
F div G+ (G •∇)F

)
dV,

where N̂ is the unit outward normal on the surface S of the
domain D.

3.A (Gauss’s Law) Show that the flux of the electric field E
outward through a closed surface S in 3-space is 1/ε0 times
the total charge enclosed by S.

4. If s = ξ i+ ηj+ ζk and f (ξ, η, ζ ) is continuous on R
3 and

vanishes outside a bounded region, show that, for any fixed r,∫∫∫
R

3

| f (ξ, η, ζ )|
|r− s| dξ dη dζ ≤ constant.

This shows that the potentials for the electric and magnetic
fields corresponding to continuous charge and current
densities that vanish outside bounded regions exist
everywhere in R

3. Hint: Without loss of generality you can
assume r = 0 and use spherical coordinates.

5. The electric charge density, ρ, in 3-space depends on time as
well as position if charge is moving around. The motion is
described by the current density, J. Derive the continuity
equation

∂ρ

∂t
= −div J

from the fact that charge is conserved.

6. If b is a constant vector, show that

∇

(
1

|r− b|

)
= − r− b
|r− b|3 .

7. If a and b are constant vectors, show that for r 
= b,

div
(

a ×
r− b
|r− b|3

)
= 0.

Hint: Use identities (d) and (h) from Theorem 3 of
Section 16.2.

8. Use the result of Exercise 7 to give an alternative proof that

div
∮
F

ds × (r− s)
|r− s|3 = 0.

Note that div refers to the r variable.

9. If a and b are constant vectors, show that for r 
= b,

curl
(

a ×
r− b
|r− b|3

)
= −(a •∇)

r− b
|r− b|3 .

Hint: Use identity (e) from Theorem 3 of Section 16.2.

10. If F is any smooth vector field, show that∮
F

(ds •∇)F(s) = 0

around any closed loop F. Hint: The gradients of the
components of F are conservative.

11. Verify that if r does not lie on F, then

curl
∮
F

ds × (r− s)
|r− s|3 = 0.

Here, curl is taken with respect to the r variable.

12. Verify the formula curl A = B, where A is the magnetic
vector potential defined in terms of the steady-state current
density J.

13. If A is the vector potential for the magnetic field produced by
a steady current in a closed-loop filament, show that
div A = 0 off the filament.

14. If A is the vector potential for the magnetic field produced by
a steady, continuous current density, show that div A = 0
everywhere. Hence, show that A satisfies the vector Poisson
equation ∇

2A = −J.

15. Show that in a region of space containing no charges (ρ = 0)
and no currents (J = 0), both U = E and U = B satisfy the
wave equation

∂2U
∂t2 = c2

∇
2U,

where c = √1/(ε0μ0) ≈ 3× 108 m/s.
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16. As shown in this section, the static versions of Maxwell’s
equations needed revision when the fields E and B were
allowed to depend on time. Show that the expression
E = −∇φ is no longer consistent with Maxwell’s equations
because the E field is no longer irrotational. Why does
curl A = B continue to hold?

17. While the nonstatic Maxwell equations are not compatible
with E = −∇φ, show that they are compatible with the
equation

E = −∇φ − ∂A
∂t

.

18.A (Heat flow in 3-space) The internal energy, E , of a volume
element dV within a homogeneous solid is ρcT dV , where ρ
and c are constants (the density and specific heat of the solid
material), and T = T (x, y, z, t) is the temperature at time t
at position (x, y, z) in the solid. Heat always flows in the

direction of the negative temperature gradient and at a rate
proportional to the size of that gradient. Thus, the rate of
flow of heat energy across a surface element d S with normal
N̂ is −k∇T • N̂ d S, where k is also a constant depending on
the material of the solid (the coefficient of thermal
conductivity). Use “conservation of heat energy” to show
that for any region R with surface S within the solid

ρc
∫∫∫

R

∂T

∂t
dV = k

∫
©
∫
S

∇T • N̂ d S,

where N̂ is the unit outward normal on S. Hence, show that
heat flow within the solid is governed by the partial
differential equation

∂T

∂t
= k

ρc
∇

2T = k

ρc

(
∂2T

∂x2 +
∂2T

∂y2 +
∂2T

∂z2

)
.
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