THE UNIVERSITY OF STAVANGER FACULTY OF SCIENCE AND TECHNOLOGY

EXAM I: MAT300 Vector Analysis (Continuation Exam)

DATE: Monday 5. March 2018, 09:00 – 13:00

PERMITTED TO USE:

Rottmann: Matematisk formelsamling

Calculators permitted in accordance with TN faculty rules

THE EXERCISE SHEET CONSISTS OF 4 EXERCISES ON 2 PAGES

+ 1 PAGE WITH FORMULAS.

EACH OF THE 11 PARTS 1a, 1b, 1c, 1d, 2a, 2b, 2c, 3a, 3b, 4a, 4b ARE WORTH EQUAL MARKS.

EXERCISE 1

Consider the curve \mathscr{C} : $\mathbf{r}(t) = \sqrt{2} \sin(2t) \mathbf{i} - \mathbf{j} +$ √ $2\cos(2t)$ **k**, $0 \le t \le \pi$.

- a) Find a unit tangent vector to $\mathscr C$ at the point corresponding to $t = \pi/8$.
- b) Compute the line integral

$$
\int_{\mathscr{C}} 2z^2 - x^2 y \, ds \, .
$$

Consider the vector field given by

$$
\mathbf{F}(x,y,z) = \frac{z\,\mathbf{i} + y\,\mathbf{j} - x\,\mathbf{k}}{x^2 + z^2} \,.
$$

c) Compute the line integral

$$
\int_{\mathscr{C}} \mathbf{F} \bullet d\mathbf{r} .
$$

d) Show that C is a closed curve, and then, using your answer to part (c) , state whether \bf{F} is a conservative vector field. Give a reason to justify your answer.

EXERCISE 2

Consider the transformation $u = y^2 - x$, $v = x + y$, between the (x, y) -coordinates and the (u, v) -coordinates.

Let R be the bounded region in the upper half of the xy -plane between the lines $x = y^2 - 1, x = y^2 + 1, x + y = 2$, and the *x*-axis.

- a) Sketch the given region R in the xy -plane and the region S in the uv-plane that corresponds to R under this coordinate transformation.
- b) Find the Jacobi determinants

$$
\frac{\partial(x,y)}{\partial(u,v)}
$$
 and $\frac{\partial(u,v)}{\partial(x,y)}$.

c) Use the change of coordinates given above to compute the double integral

$$
\iint_R (2y+1)(x+y+2) dA.
$$

EXERCISE 3

Let the surface $\mathscr S$ be defined by $z = 2 - x^2 - y^2$ for $0 \le z \le 1$. Note that $\mathscr S$ is an inverted paraboloid whose top has been "cut off".

Let T be the solid region bounded by the surface $\mathscr S$ and the two horizontal planes $z = 0$ and $z = 1$.

a) Compute the triple integral

$$
\iiint_T z\,dV.
$$

b) Compute the area of \mathscr{S} , given by

$$
\iint_{\mathscr{S}} dS.
$$

EXERCISE 4

Consider the vector field $\mathbf{F}(x, y, z) = xz\,\mathbf{i} + y^2\,\mathbf{j} + (1 - xz - y^2)\,\mathbf{k}$.

a) Compute $\nabla \bullet \mathbf{F}$ (the divergence of **F**) and $\nabla \times \mathbf{F}$ (the curl of **F**).

Let $\mathscr C$ be the closed triangular loop with corners at the points $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$. The orientation on $\mathscr C$ is anticlockwise when viewed from the origin.

b) Use Stokes' theorem to compute the curve integral

$$
\oint_{\mathscr{C}} \mathbf{F} \bullet d\mathbf{r} .
$$

END OF EXAM

Formulas:

Change of variables for double integrals:

$$
\iint_R f(x, y) dx dy = \iint_S f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv.
$$

Line integral of a function f along a curve \mathscr{C} : $\mathbf{r} = \mathbf{r}(t)$, $a \le t \le b$:

$$
\int_{\mathscr{C}} f ds = \int_{a}^{b} f(\mathbf{r}(t)) \left| \frac{d\mathbf{r}}{dt} \right| dt.
$$

Line integral of a vector field $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$, along a curve \mathscr{C} : $\mathbf{r} = \mathbf{r}(t)$, $a \le t \le b$:

$$
\int_{\mathscr{C}} \mathbf{F} \cdot \hat{\mathbf{T}} ds = \int_{\mathscr{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathscr{C}} F_1 dx + F_2 dy + F_3 dz = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt = \int_a^b (F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt} + F_3 \frac{dz}{dt}) dt.
$$
\n\nIntegral of a function f over a surface $\mathscr{L} : z = g(x, y)$ parametrised by $(x, y) \in R$.

Integral of a function f over a surface $\mathscr{S}: z = g(x, y)$, parametrised by $(x, y) \in R$:

$$
\iint_{\mathscr{S}} f \, dS = \iint_{R} f \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \, dx \, dy \, .
$$

Integral of a function f over a surface \mathscr{S} : $G(x, y, z) = c$, parametrised by $(x, y) \in R$:

$$
\iint_{\mathscr{S}} f \ dS = \iint_{R} f \frac{|\nabla G|}{\left|\frac{\partial G}{\partial z}\right|} dx \, dy \, .
$$

Flux of a vector field **F** through a surface \mathscr{S} : $z = g(x, y)$, parametrised by $(x, y) \in R$:

$$
\iint_{\mathscr{S}} \mathbf{F} \bullet d\mathbf{S} = \iint_{\mathscr{S}} \mathbf{F} \bullet \hat{\mathbf{N}} dS = \iint_{R} \mathbf{F} \bullet \pm (-\frac{\partial g}{\partial x} \mathbf{i} - \frac{\partial g}{\partial y} \mathbf{j} + \mathbf{k}) dx dy.
$$

Flux of a vector field **F** through a surface \mathscr{S} : $G(x, y, z) = c$, parametrised by $(x, y) \in R$:

$$
\iint_{\mathscr{S}} \mathbf{F} \bullet d\mathbf{S} = \iint_{\mathscr{S}} \mathbf{F} \bullet \hat{\mathbf{N}} dS = \iint_{R} \mathbf{F} \bullet \frac{\pm \nabla G}{\frac{\partial G}{\partial z}} dx dy.
$$

Divergence theorem:

$$
\iiint\limits_{D} \nabla \bullet \mathbf{F} \ dV = \oiint\limits_{\mathscr{S}} \mathbf{F} \bullet \hat{\mathbf{N}} \ dS \, .
$$

Stokes' theorem:

$$
\iint\limits_{\mathscr{S}} (\nabla \times \mathbf{F}) \bullet \hat{\mathbf{N}} \ dS = \oint\limits_{\mathscr{C}} \mathbf{F} \bullet d\mathbf{r} \ .
$$

Formulas involving $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$:

$$
\text{grad } f = \nabla f, \quad \text{div } \mathbf{F} = \nabla \bullet \mathbf{F}, \quad \text{curl } \mathbf{F} = \nabla \times \mathbf{F}.
$$

Cylindrical coordinates: $(r \cos \theta, r \sin \theta, z) = (x, y, z)$. Spherical coordinates: $(R \sin \phi \cos \theta, R \sin \phi \sin \theta, R \cos \phi) = (x, y, z).$ Trigonometric formulas: $\sin 2\theta = 2 \sin \theta \cos \theta$, $\cos 2\theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta$.

1.
$$
C: y(t) = \sqrt{2} sin(2t) \hat{y} - \hat{y} + \sqrt{2} cos(2t) \hat{y}
$$
, $0 \le t \le \pi$.
\n(a) $y'(t) = 2\sqrt{2} cos(2t) \hat{y} - 2\sqrt{2} sin(2t) \hat{y}$, $0 \le t \le \pi$.
\n $y'(t) = 2\sqrt{2} cos(\pi/2) \hat{y} - 2\sqrt{2} sin(\pi/2) \hat{y}$, $0 \le t \le \pi$.
\n $y'(t) = \sqrt{2} cos(\pi/2) \hat{y} - 2\sqrt{2} sin(\pi/2) \hat{y}$
\n $= 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} \hat{y} = 2\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \cdot \frac{1$

(C)
$$
\underline{F}(x,y,z) = \frac{z \underline{c} + y \underline{j} - x \underline{k}}{x^2 + z^2}
$$

$$
\int_{e} \underline{F} \cdot d\underline{r} = \int_{0}^{\pi} \underline{F}(\underline{r}(t)) \cdot \underline{r}'(t) dt
$$

$$
\underline{F}(\underline{r}(t)) = \sqrt{\lambda} \cos(2t) \underline{t} - \underline{j} - \sqrt{2} \sin(2t) \underline{k}
$$

$$
\frac{f \cdot r'(t)}{2} = \frac{4 \cos^2(2t) + 4 \sin^2(2t)}{2} = \frac{4}{2} = 2
$$

 $\label{eq:2.1} \mathcal{R} = \mathcal{R} \left(\mathcal{R} \right) \left(\mathcal{R} \right)$

So
$$
\int_{e} f \cdot dv = \int_{0}^{\pi} 2 dt = 2\pi
$$
.

 $2:$

 (d) We notice that $r(0)=(0,-1,5)$ = $r(\pi)$, so C is a closed loop. By (c), $\oint_{\tau} E \cdot dx \neq 0$. If F were conservative, the circulation around every closed loop would be zero (by a theorem From lectures). Thus, since we found a loop (C) around which have is not zero, E cannot Circulation the Conservative. be

2.
$$
u = y^2 - x
$$
 $v = x + y$
\n
$$
R: \text{ region between } x = y^2 - 1, x = y^2 + 1, x + y = 2, y = 0 (x-a).
$$
\n(a) $x = y^2 - 1 \Rightarrow y^2 - x = 1 \Rightarrow u = 1$
\n $x = y^2 + 1 \Rightarrow y^2 - x = -1 \Rightarrow u = -1$
\n $x + y = 2 \Rightarrow v = 2$
\n $y = 0 \Rightarrow u + v = y^2 - x + x + y = y^2 + y = 0 \Rightarrow v = -u.$

$$
\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{\frac{\partial(u, v)}{\partial(x, y)}} = \frac{1}{-1 - 2y} = -\frac{1}{1 + 2y}.
$$

(c)
$$
T = \iint_{R} (2y+1)(x+y+2) dA
$$
.
\n $d(A = \frac{\partial(x,y)}{\partial(x,y)}) du dv = \frac{1}{1+2y} du dv$ (Since 1+2y²0 on R).
\nSo $T = \iint_{S} (2y+1)(x+y+2) \frac{1}{1+2y} du dv$
\n $= \iint_{S} (x+y+2) dudv = \iint_{S} (v+2) dudv$.
\nNow $S: -1 \le u \le 1$, $-u \le v \le 2$.
\n $\Rightarrow T = \int_{-1}^{1} du \int_{-u}^{2} (v+2) dv = \int_{-u}^{1} \frac{1}{2}v^2 + 2v \Big|_{-u}^{2} du$
\n $= \int_{-u}^{1} 2 + 4 - (\frac{1}{2}u^2 - 2u) du = \int_{-u}^{1} 6 + 2u - \frac{1}{2}u^2 du$
\n $= \int_{-u}^{1} 2 + 4 - (\frac{1}{2}u^2 - 2u) du = \int_{-u}^{1} 6 + 2u - \frac{1}{2}u^2 du$
\n $= \int_{-u}^{1} 2 + 4 - (\frac{1}{2}u^2 - 2u) du = (\int_{-u}^{1} 6 + 2u - \frac{1}{2}u^2 du)$
\n $= 12 - \frac{1}{2} = \frac{35}{3}$.

3.
$$
3: z = 2-x^2-y^2
$$
, $0 \le z \le 1$
\n= $2-r^2$
\nT: $region bounded by 5 and plane z=0, z=1$.
\n(a) T: $0 \le 0 \le 2\pi$
\n q $0 \le r \le \sqrt{2-z}$
\n $\sqrt{2}$ $u + f(x,y,z) = z$
\n $\sqrt{2}$ $u + f(x,y,z) = \frac{z}{z}$
\n $\sqrt{2}$ $\int_{0}^{2\pi} dV = \int_{0}^{2\pi} d\theta \int_{0}^{1} dz \int_{0}^{\sqrt{2-z}} zr dr$
\n $= 2\pi \int_{0}^{1} \frac{1}{2}z(2-z) dz = 2\pi \left[\frac{1}{2}z^2 - \frac{1}{6}z^3 \right]_{0}^{1} = \frac{2}{3}\pi$

 α , α , α , α

 $\hat{\mathcal{X}}$, and $\hat{\mathcal{X}}$, and $\hat{\mathcal{X}}$

(b)
$$
\int \frac{1}{2}z^{2} - 2 - x^{2} - y^{2} = g(x, y)
$$
\n
$$
\Rightarrow dS = \sqrt{(2x)^{2} + (2y)^{2} + 1} dx dy = \sqrt{4r^{2} + 1} dxdy
$$
\n
$$
proj\neq (j\theta)
$$
\n
$$
\Rightarrow dS = \sqrt{(2x)^{2} + (2y)^{2} + 1} dx dy = \sqrt{4r^{2} + 1} dxdy
$$
\n
$$
\Rightarrow \text{radius: } z = 1 = 2 - r^{2} \Rightarrow r = 1 \Rightarrow r = 1
$$
\n
$$
\text{where radius: } z = 0 = 2 - r^{2} \Rightarrow r = \sqrt{2}.
$$
\n
$$
\frac{3}{2}k : 0 \le \theta \le 2\pi
$$
\n
$$
1 \le r \le \sqrt{2}
$$
\n
$$
\Rightarrow \int \frac{3r}{\sqrt{4r^{2}}} = \int \sqrt{4r^{2} + 1} \cdot r dr d\theta
$$
\n
$$
= \int_{0}^{2\pi} d\theta \int_{1}^{\sqrt{2}} r (4r^{2} + 1)^{\frac{1}{2}} dr
$$
\n
$$
= \pi \int_{0}^{2\pi} (2r^{2} + 1)^{\frac{3}{2}} dr = \frac{\pi}{6} [\frac{3}{2} - 5^{3} \cdot]
$$
\n
$$
= \pi \int_{0}^{2\pi} [2r^{2} - 5^{3} \cdot] \approx 8.283
$$

 $7₁$

4.
$$
F(x,y,z) = xz \cdot y^{2} + (1-xz-y^{2})k
$$

\n(a) $\sum f = z + 2y^{2} - x$
\n $\sum x f = \frac{1}{2} \int \frac{1}{3} \int \frac{k}{3} \, dx$
\n $\int xz = y^{2} + (x+z)^{2}$
\n $= \frac{1}{2}(-2y) + \frac{1}{3}(\frac{x}{2} + \frac{1}{2} + 0)$
\n $= -2y\frac{1}{2} + (x+z)\frac{1}{3}$
\n(b) Let $3k = \text{triangle}$ $x+y,z=1, x\ge0, y\ge0, z\ge0$
\n \therefore The $\sum i s$ the boundary curve of $\frac{3}{5}$.
\n \therefore $\frac{3}{1}dS = \frac{1}{2}(\frac{1}{2} + \frac{1}{3} + \frac{k}{2})dx dy$
\n \therefore $\frac{5}{1}dS = (-\frac{1}{2} - \frac{1}{3} - \frac{k}{2})dx dy$.
\n $\int \frac{5}{1}d\frac{1}{5} = \int \frac{5}{3}(\frac{5}{2} \times \frac{5}{2}) \cdot \frac{5}{3}dS = 2y - x - z \Rightarrow dx dy$.
\nOn $\frac{5}{3} = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \Rightarrow (\frac{5}{3} \times \frac{5}{3}) \cdot \frac{3}{3}dS = (3y - 1) dx dy$.

