Solution: MPE 340 Reservoir simulation, introduction **DATE: June. 9, 2006**

Problem 1

- a) See course material.
- b) See course material.
- c) Mass balance equations

$$\frac{\partial}{\partial x}\left(\frac{kk_{ro}}{\mu_{o}}\rho_{o}x_{1}\frac{\partial p_{o}}{\partial x}\right) + \frac{\partial}{\partial x}\left(\frac{kk_{rg}}{\mu_{g}}\rho_{g}y_{1}\frac{\partial p_{g}}{\partial x}\right) + q_{1} = \frac{\partial}{\partial x}\left[\rho\left(S_{o}\rho_{o}x_{1} + S_{g}\rho_{g}y_{1}\right)\right]$$

$$\frac{\partial}{\partial x} \left(\frac{kk_{ro}}{\mu_o} \rho_o x_2 \frac{\partial p_o}{\partial x} \right) + \frac{\partial}{\partial x} \left(\frac{kk_{rg}}{\mu_g} \rho_g y_2 \frac{\partial p_g}{\partial x} \right) + q_2 = \frac{\partial}{\partial x} \left[\varphi \left(S_o \rho_o x_2 + S_g \rho_g y_2 \right) \right]$$

Unknowns: $p_o, p_g, S_o, S_g, x_1, x_2, y_1, y_2$

Equations

- -2 mass balance equations
- $S_o + S_g = 1$ -
- $P_{cgo}(S_g) = p_g p_o$ $x_1 + x_2 = 1, y_1 + y_2 = 1$
- Equilibrium conditions: $K_1 = y_1 / x_1$, $K_2 = y_2 / x_2$ -

Solution procedure

- use the last 6 constraint equations to eliminate 6 unknowns -
- solve for the remaining 2 unknowns using mass balance equations -
- use the constraint equations to update the 6 eliminated unknowns -

Problem 2

- a) Absolute permeability
 - heterogeneous _
 - anisotropic _
 - independent of time -

Porosity

- heterogeneous
- isotropic
- pressure dependent, $\phi = \phi_0 [1 + c(p p_0)]$
- b) Fluid input parameters
 - reference densities for gas, oil, water, ρ_{gs} , ρ_{os} , ρ_{ws}
 - volume factors for gas, oil, water, B_g, B_o, B_w
 - gas in oil solution ratio R_s

Oil component density: $\rho_{oc} = \rho_{os} V_{o,STC} / V_{o,RC} = \rho_{os} / B_o$ Oil phase density: $\rho_{op} = (\rho_{os} V_{o,STC} + \rho_{gs} V_{dg}) / V_{o,RC} = \rho_{oc} + \rho_{gs} R_s / B_o$

c) See course material.

Problem 3

a) Input normalized functions:

Given saturation end points S_{wr} , S_{gr} , S_{ogr} and *KRG* (max value of k_{rg}), *KRO* (max value of k_{rog})

Given gas saturation S. $k_{rg}(S) = KRG (S - S_{gr})/(1 - S_{wr} - S_{gr}), S \ge S_{gr}$ and $k_{rg}(S) = 0, S < S_{gr}$ Given gas saturation S. $k_{rog}(S) = KRO (1 - [S/(1 - S_{wr} - S_{ogr})]), S < 1 - S_{wr} - S_{ogr}$ and $k_{rg}(S) = 0, S \le 1 - S_{wr} - S_{ogr}$

b) Given gas saturation S. $k_{rg}(S) = KRG (S - S_{gr})/(1 - S_{wr} - S_{gr}), S \ge S_{gr}$, and $k_{rg}(S) = 0, S < S_{gr}$. Given gas saturation S. $k_{rog}(S) = KRO (1 - [S/(1 - S_{wr} - S_{ogr})]), S < 1 - S_{wr} - S_{ogr}$ and $k_{rog}(S) = 0, S \ge 1 - S_{wr} - S_{ogr}$.

Problem 4

- a) Assumptions:
 - incompressible fluids
 - incompressible rock
 - zero capillary pressure
 - homogeneous reservoir

$$\gamma_{l,x} = \rho_l g_x = \rho_l g \sin \alpha$$

$$u_{l} = -\frac{kk_{rl}}{\mu_{l}} (\frac{\partial p_{l}}{\partial x} \pm \rho_{l} g \sin \alpha)$$

The part of the fluid velocity caused by gravity is given by $\frac{kk_{rl}}{\mu_l}\rho_l g \sin \alpha$

If α is positive the gravity g_x acts in the negative x-direction as depicted in the figure, Hence, the + sign must be selected

$$u = -\frac{kk_{rl}}{\mu_l} \left(\frac{\partial p_l}{\partial x} + \rho_l g \sin \alpha\right)$$

- c) See course material.
- d) Parameters effecting F but not f are
 - flow rate
 - absolute permeability
 - density difference
 - dip angle

F is negative if

 $Gk_{ro} > 1$.

If max k_{ro} is 1, then F will take negative values if G > 1.

e) Water injection at the lowest part will be most efficient. In this case α will be positive and G will be positive. For the opposite case, G will be negative.

b)

The fractional flow curve for positive G will always be less than the curve for negative G. Hence, the font saturation for G positive is larger than the front saturation for G negative as depicted in the figure. Larger front saturation will result in higher recovery.

Problem 5

See Exercises with solutions on It's learning.