
Solution: MPE 340 Reservoir Simulation, Introduction
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Problem 1
a)
Different quantities:

ρ density, φ porosity, q source term
→
v= (vx, vy, vz) velocity field
∇· →v= ∂xvx + ∂yv

y + ∂zv
z

Darcy’s law:
→
v= − [k]

µ (∇p− ρg∇d) = − [k]
µ (∇p− ρg

→
k )

µ viscosity, p pressure, g gravity constant, d distance function in vertical direction;
for z-axis parallel to vertical direction: d(x, y, z) = z.

[k] =




kx 0 0
0 ky 0
0 0 kz




Resulting equation:

∇ ·
(
ρ
[k]
µ

(∇p− ρg
→
k )

)
+ q =

∂

∂t
(ρφ).

Simplifying assumptions:
1D horizontal domain, constant kx, µ, and φ.
b)
Let ρ(p) = m

V (p) . Then

dρ(p)
dp

= m
d

dp

( 1
V (p)

)
= − m

V 2

dV (p)
dp

= cV
m

V 2
= cρ,

where we have used −cV = dV
dp .

c)
First, we have

ρc∇p(ρ) = ρc
dp

dρ
∇ρ.

Next, we use that 1 = dp(ρ)
dp = dp

dρ
dρ
dp to conclude that

ρc∇p(ρ) =
ρc
dρ
dp

∇ρ = ∇ρ,

where we have used the result from b). Inserting this last relation (one-dimensional version)
in Eq.(1) we get

k

µ

∂

∂x

(
ρ

1
ρc

∂ρ

∂x

)
+ q = φ

∂ρ

∂t
.

Consequently, we obtain the desired density equation with coefficient κ = k
cµφ .
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Problem 2
a)
Assumptions:

1D horizontal flow, immiscible flow, incompressible fluids,
φ and k are constant,
capillary pressure is neglected
reservoir is initially filled with oil
constant injection rate
existence of unique solution

f(S) =
λw(S)

λw(S) + λo(S)
=

krw(S)
krw(S) + Mkro(S)

, M =
µw

µo
, S = water saturation.

b)
Height Sf of water front:

f ′(Sf ) =
f(Sf )

Sf
⇒ Sf ≈ 0.6 (from Fig. 1).

Front velocity V :

V = f ′(Sf ) =
f(Sf )

Sf
≈ 0.88

0.6
= 1.467, since f(0.6) ≈ 0.88 (from Fig. 1).

Position of front at time T = 0.4:

xf = V T = 1.467 · 0.4 = 0.587.

Saturation S1 located at x1 = 0.2:

x1 = f ′(S1)T ⇒ f ′(S1) = 0.5 ⇒ S1 ≈ 0.70 (from Fig. 2).

Saturation S2 located at x2 = 0.4:

x2 = f ′(S2)T ⇒ f ′(S2) = 1 ⇒ S2 ≈ 0.64 (from Fig. 2).

c)
Tb is given by

1 = V Tb ⇒ Tb ≈ 1
1.467

= 0.68.

For T < Tb we have the following oil recovery:

R =
volume of injected water

volume of initial oil in place
= A(T ),

where A(T ) is the area limited by the solution S(x, T ) and the axis. Consequently,

R = A(T ) = xfSf +
∫ 1

Sf

Tf ′(S) dS

= f ′(Sf )SfT + T (f(1)− f(Sf )) = f(Sf )T + T (1− f(Sf )) = T,

since f ′(Sf )Sf = f(Sf ).
For T > Tb we have the same expression R = A(T ), but A(T ) is now given by

R = A(T ) = S∗(T ) · 1 +
∫ 1

S∗(T )
f ′(S)T dS = S∗(T ) + T (1− f(S∗(T ))),
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where S∗(T ) now satisfy 1 = f ′(S∗(T ))T . Consequently, for the case of b) with T = 1 we get

1 = f ′(S∗(1)) ⇒ S∗(1) ≈ 0.64 (from Fig. 2)

This implies,

R(T = 1) = 0.64+1(1−f(0.64)) ≈ 0.64+1−0.93 = 0.71 since f(0.64) ≈ 0.93 (from Fig. 1).

Problem 3
a)
Main assumptions:

- 3 phases: water, oil, gas
- 3 components: water, oil, gas
- no phase transition between water and hydrocarbons
- a part of the gas component can be dissolved in oil (and flows together with the oil

component in the oil phase)
- all of the oil component is in the oil phase
- constant temperature

b)
Different mass components that fill pore space:

1 water component in water phase: ρwSw

1 oil component in oil phase: ρoSo

1 gas component in oil phase: ρdgSo

1 gas component in gas phase: ρgSg

Continuity equations, respectively, for the water component, the oil component, and the two
gas components:

∇ · (ρw
→
vw) = − ∂

∂t
(φρwSw) + qw

∇ · (ρo
→
vo) = − ∂

∂t
(φρoSo) + qo

∇ · (ρdg
→
vo +ρg

→
vg) = − ∂

∂t
(φρdgSo + φρgSg) + qg

→
vl, l = w, o, g (velocity fields)
Sl, l = w, o, g (saturations) such that Sw + So + Sg = 1
φ porosity

c)
For the densities at standard conditions we have:

ρs
l =

ml

[Vl]ST
, l = w, o, g, ρs

dg =
mdg

[Vdg]ST
= ρs

g

and volume factors Bl and gas-oil solution ratio Rs are defined as

Rs =
[Vdg]ST

[Vo]ST
, Bl =

[Vl]RC

[Vl]ST
, l = w, o, g
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Using this, we have

ρw =
mw

[Vw]RC
= ρs

w

[Vw]ST

[Vw]RC
=

ρs
w

Bw

ρo =
mo

[Vo]RC
= ρs

o

[Vo]ST

[Vo]RC
=

ρs
o

Bo

ρg =
mg

[Vg]RC
= ρs

g

[Vg]ST

[Vg]RC
=

ρs
g

Bg

ρdg =
mdg

[Vo]RC
= ρs

g

[Vdg]ST

[Vo]RC
· [Vo]ST

[Vo]ST
=

ρs
g

Bo
Rs

Inserting these relations in equations of b), dividing by the constant density ρs
l , we arrive at

∇ · ( 1
Bw

→
vw) = − ∂

∂t
(φ

Sw

Bw
) +

qw

ρs
w

∇ · ( 1
Bo

→
vo) = − ∂

∂t
(φ

So

Bo
) +

qo

ρs
o

∇ · (Rs

Bo

→
vo +

1
Bg

→
vg) = − ∂

∂t
(φ

RsSo

Bo
+ φ

Sg

Bg
) +

qg

ρs
g

Problem 4
a)
Water-oil system:

k2p
rw : Swr ≤ Sw ≤ 1, S′ =

Sw − Swr

1− Swr
∈ [0, 1], k2p

rw(Sw) = kt
rw(S′) = (S′)3

k2p
row : Swr ≤ Sw ≤ 1− Sowr, S′ =

Sw − Swr

1− Swr − Sowr
∈ [0, 1], k2p

row(Sw) = kt
row(S′) = (1− S′)2

Gas-oil system:

k2p
rg : Sgr ≤ Sg ≤ 1− Swr, S′ =

Sg − Sgr

1− Swr − Sgr
∈ [0, 1], k2p

rg(Sg) = kt
rg(S

′) = (S′)2

k2p
rog : 0 ≤ Sg ≤ 1− Swr − Sogr, S′ =

Sg

1− Swr − Sogr
∈ [0, 1], k2p

rog(Sw) = kt
row(S′) = (1− S′)3

b)
Three-phase relative permeability curves for water, gas, and oil are obtained as follows:

k3p
rw(Sw) = k2p

rw(Sw)

k3p
rg(Sg) = k2p

rg(Sg)

k3p
ro(Sw, Sg) = interpolation of k2p

row(Sw) and k2p
rog(Sg)
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c)

krw(Sw = 0.5) =
(0.5− Swr

1− Swr

)3
=

(0.35
0.85

)3
=

( 7
17

)3
= 0.41173 = 0.069

krg(Sg = 0.3) =
( 0.3− Sgr

1− Swr − Sgr

)2
=

(0.10
0.65

)2
=

( 2
13

)2
= 0.1542 = 0.024

k2p
row(Sw = 0.5) =

(
1− 0.5− Swr

1− Swr − Sowr

)2
= (1− 0.35/0.75)2 = 0.284

k2p
rog(Sg = 0.3) =

(
1− 0.3

1− Swr − Sogr

)3
= (1− 0.3/0.6)3 = 0.53 = 0.125

kro(Sw = 0.5, Sg = 0.3) =
0.35
0.65

k2p
row(Sw = 0.5) +

0.30
0.65

k2p
rog(Sg = 0.3)

= 0.538 · 0.284 + 0.462 · 0.125 = 0.153 + 0.058 = 0.21

Problem 5
The following equation is given,

(1)
Ckbr

µ

∂2p

∂x2
+ q = φcfbr

∂p

∂t
.

a)
Looking at block no. i we let A denote the boundary plane with the neighbor block i− 1 in
the negative x-direction and B the boundary plane with the neighbor i + 1 in the positive
x-direction. To simplify we define Y by

Y =
Ckbr

µ

∂p

∂x
,

and (1) is written

(2)
∂Y

∂x
+ q = φcfbr

∂p

∂t
.

The finite difference scheme is used to discretize equation (2), the right-hand-side in the
x-direction and the left-hand-side in time, and

(3)
Yi|B − Yi|A

∆x
+ qi = φcfbr

pi(tn+1)− pi(tn)
∆t

.

Furthermore

Yi|B ≈ Ckbr

µ

pi+1(t)− pi(t)
∆x

,

and correspondingly for the other term,

Yi|A ≈
Ckbr

µ

pi(t)− pi−1(t)
∆x

.

These two expressions gives respectively the volum flow of oil in from the right and left to
block i and equation 3 sets the difference equal to the change in oil volume per time by
expansion or injection in the block. In these expressions for the volume rate into block i we
have to specify at which time level the pressures are chosen. The most common choice in
modern industrial simulators is to chose t at new time tn+1, the so-called implicit formulation.
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Inserted into equation 3 we get

(4)

Ckbr

µ(∆x)2
[pi+1(tn+1)− pi(tn+1)]

− Ckbr

µ(∆x)2
[pi(tn+1)− pi−1(tn+1)] + qi = φcfbr(pi(tn+1)− pi(tn))/∆t.

b)
Let us now set T = Ckbr/µ(∆x)2 and simplify the notation by setting pk ≡ pk(tn+1) for
arbitrary k. The equation rearranged is

Tpi−1 − (2T + φcfbr/∆t)pi + Tpi+1 = −(φcfbrpi(tn)/∆t + qi).

The end blocks require special attention. We will assume a closed reservoir with no flow
across the left and right boundaries: Y1|A = 0 and Yl|B = 0, when N denotes the last block.
For the first block the equation reads

−(T + φcfbr/∆t)p1 + Tp2 = −(φcfbrp1(tn)/∆t + q1),

and for the last block N

TpN−1 − (T + φcfbr/∆t)pN = −(φcfbrpN (tn)/∆t + qN ).

Let m be 1 if the block number i is 1 or N and 2 otherwise. Then we can define

W = mT + φcfbr/∆t

ai = T/W

ci = T/W

di = (φcfbrpi(tn)/∆t + qi/W,

and get equation 3 in the following numerical form,

(5) aipi−1 − pi + cipi+1 = −di.


