

FACULTY OF SCIENCE AND TECHNOLOGY

SUBJECT: MPE 340 Reservoir Simulation, Introduction D

DATE: May 8, 2009

TIME: 4 hours

AID: No printed or written means are allowed. Definite basic calculator allowed.

THE EXAM CONSISTS OF 5 PROBLEMS ON 5 PAGES

REMARKS: You may answer in English or Norwegian. All problem parts a), b), ... are given equal weight.

Problem 1

The single-phase continuity equation is given by

$$\nabla \cdot (\rho \ \overrightarrow{v}) = -\frac{\partial}{\partial t}(\phi \rho) + q.$$

a) Define the different quantities (including the definition of $\nabla \cdot = \text{div}$).

- Write down the general Darcy's law in 3D, define the various quantities, and use Darcy's law to rewrite the above continuity equation. Assume that z-axis is directed downwards parallel to the vertical direction.
- By imposing various simplifying assumptions on the mass balance equation we get an equation of the form

(1)
$$\frac{k}{\mu}\frac{\partial}{\partial x}\left(\rho\frac{\partial p}{\partial x}\right) + q = \phi\frac{\partial\rho}{\partial t}.$$

List the different assumptions.

b) We assume that the fluid is compressible, i.e., $\rho = \rho(p)$. Let c be the compressibility (constant) and given by

$$c = -\frac{1}{V(p)} \frac{dV(p)}{dp}$$

where V(p) represents volume. Show that $\rho c = \frac{d\rho(p)}{dp}$.

c) Show that $\rho c \nabla p(\rho) = \nabla \rho$ by using the result of b). Finally, use this result in Eq. (1) and show how to obtain a diffusion equation in terms of the density ρ given by

$$\kappa \frac{\partial^2 \rho}{\partial x^2} + \frac{q}{\phi} = \frac{\partial \rho}{\partial t}.$$

In particular, identify the constant κ .

Problem 2

In this problem the solution of the Buckley-Leverett equation $\partial_t S + \partial_x f(S) = 0$ for a horizontal 1D domain is considered in dimensionless variables x and t.

a) Give the main assumptions used in the Buckley-Leverett theory for the study of twophase water-oil flow in 1D porous media.

Define the fractional flow function f(S) in terms of relative permeability functions and viscosities.

b) A specific fractional flow function f(S) is given in Fig. 1 and the corresponding derivative f'(S) is given in Fig. 2. In the following we shall use this information to construct a good approximation of the solution for a dimensionless time T = 0.4. In particular,

- compute the (approximate) water front height S_f and its position x_f at time T = 0.4;
- compute (approximate) saturations at dimensionless distances $x_1 = 0.2$ and $x_2 = 0.4$ and make a sketch of the solution.

c) Recovery factor is defined as the amount of produced oil divided by the initial oil in place.

- For the example given in b), find the time T_b when the water front reaches the producer located at x = 1.
- What is the expression for the oil recovery for time $T < T_b$? Give a derivation of this expression.
- Let $S^*(T)$ denote the height of the water front at x = 1 for a time $T > T_b$. Use $S^*(T)$ and derive the expression $R = S^*(T) + T(1 f(S^*(T)))$ for the oil recovery for time $T > T_b$.

For the example given in b), compute oil recovery R for the dimensionless time T = 1.

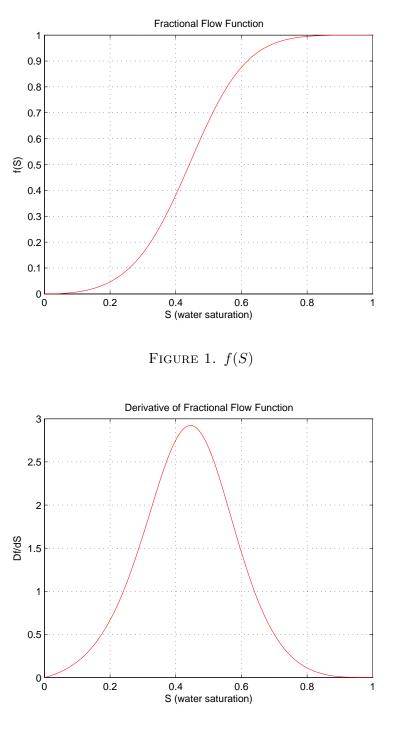


FIGURE 2. f'(S)

Problem 3

In this problem the standard Black-Oil Model is discussed.

a) What are the main assumptions for the standard Black-Oil Model.

b) Let ρ_w , ρ_o , ρ_g , and ρ_{dg} be the component densities at reservoir conditions. Write down the continuity equations for the water, oil, and gas components. No derivation is required.

c) Introduce densities at standard conditions ρ_w^s , ρ_o^s , and ρ_g^s (which are constant) and rewrite the continuity equations in b) by making use of volume factors B_l for l = w, o, g and gas-oil solution ratio R_s . It's not necessary to introduce Darcy's law.

Problem 4

Given Corey normalized relative permeability functions

$$k_{rw}^t(x) = x^3,$$
 $k_{row}^t(x) = (1-x)^2,$ oil-water system
 $k_{rq}^t(x) = x^2,$ $k_{roq}^t(x) = (1-x)^3,$ oil-gas system.

where $x \in [0, 1]$. End point saturations are given as follows:

$$S_{wr} = 0.15,$$
 $S_{owr} = 0.1,$ $S_{gr} = 0.2,$ $S_{ogr} = 0.25.$

a) Write down the expressions for the relative permeability curves $k_{rw}^{2p}(S_w)$ and $k_{row}^{2p}(S_w)$, with corresponding intervals for S_w , for the water-oil system by using the normalized curves. Do the same for $k_{rg}^{2p}(S_g)$ and $k_{rog}^{2p}(S_g)$ for the two-phase gas-oil system. Let maximum relative permeability value for all cases be 1.

b) Consider a three-phase water-oil-gas system. Explain how to obtain $k_{rw}(S_w)$, $k_{rg}(S_g)$, and $k_{ro}(S_w, S_g)$ for the three-phase system by making use of the results from a).

c) Assume that $S_w = 0.5$ and $S_q = 0.3$.

Compute value of three-phase water relative permeability.

Compute value of three-phase gas relative permeability.

Compute value of three-phase oil relative permeability by using Baker's formula given by

$$k_{ro}(S_w, S_g) = \frac{S_w - S_{wr}}{S_w + S_g - S_{wr}} k_{row}^{2p}(S_w) + \frac{S_g}{S_w + S_g - S_{wr}} k_{rog}^{2p}(S_g).$$

Problem 5

For a liquid the diffusivity equation may be approximated to the following form,

(2)
$$\frac{Ckb_r}{\mu}\frac{\partial^2 p}{\partial x^2} + q = \phi c_f b_r \frac{\partial p}{\partial t},$$

where b_r is the formation volume factor (inverse) at a reference pressure p_r , c_f the fluid compressibility, C a unit conversion factor, k permeability, μ viscosity, and q is the surface volume rate per bulk volume.

a)

A one-dimensional reservoir is discretized into N equal gridblocks with length Δx and the time is discretized into timesteps of equal length Δt . Show that Eq. (2) with implicit numerical formulation may be expressed as

(3)
$$\frac{\frac{Ckb_r}{\mu(\Delta x)^2}[p_{i+1}(t_{n+1}) - p_i(t_{n+1})]}{-\frac{Ckb_r}{\mu(\Delta x)^2}[p_i(t_{n+1}) - p_{i-1}(t_{n+1})] + q_i = \phi c_f b_r(p_i(t_{n+1}) - p_i(t_n))/\Delta t.$$

b)

Show that Eq. (3) may be written in the following form,

$$a_i p_{i-1} - p_i + c_i p_{i+1} = -d_i,$$

where a, c, d are constant coefficients. Assume that the reservoir is closed (i.e. no flow) at left and right boundary. Consequently, $p_x = 0$ at the boundary.