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Problem 1.

(a)

()

Consider the linear transport cquation
(%) Ug — TUz = q, z €R = (—00,+00)

with initial data

(%) u(z,t = 0) = ¢(x).

Set g = 0.

- Compute the solution u(z,t) by using the method of characteristics.

- Hlustrate the characteristics in a z —  coordinate system.

- Verify that your solution satisfies (*) and (**).

Consider (*) with ¢ = ¢(x,u) = %xzu.

- Compute the solution u(z,t) by using the method of characteristics. Verify that
your solution satisfies (*) and (**).

Now, consider the simpler transport equation
Uy + ugy = 0, z € 0,1]

with initial data

u(z,t =0) =0,
and boundary data
wlz=0,1)=1.
- Describe the characteristics for this model and make a plot of some of them for

z € [0,1].
- Describe the solution u(z,t = 0.5) and make a sketch of it.

Present a discrete scheme for the model problem given in (c). Present a scheme based,
respectively, on upwind discretization and central-based discretization where explicit
discretization in time is used. What can be said about stability properties of these
two different schemes?

The model in (c) can be understood as flooding of water in an initially oil-filled
reservoir where an injector is located at = 0 and a producer at z = 1.

- Reformulate the problem such that we obtain a model reflecting that water is injected
at z = 1 and oil is produced at z = 0.

- Formulate a stable discrete scheme for this model problem. \/{)b‘
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Problem 2.

(a)

(d)

In the following we consider a horizontal 1D rescrvoir.

- State the single-phasc porous media mass balance equation in 1D (without source
term) and identify the various variables (rock and fluid).

- Introduce Darcy’s law and derive an equation for the pressure where it is assumed
that ¢ = ¢(p), p = p(p), and permeability and viscosity are constant.

- Assuming a weakly compressible rock (compressibility ¢, is small) we get a linear
relation for ¢(p).

é(p) = o[l + c-(p — po)),

where pg and ¢y are reference pressurc and porosity. Use this together with the
assumption that the fluid is incompressible and show that we then can obtain a
pressure equation of the form

(*) Pt = KPzx, zeR= (‘007 +OO)7

and identify the constant parameter x > 0.

We now set £ = 1 in (*). Verify that

taw) gl = 71-77- / fe-OQde

satisfies (*).
What must be the initial condition corresponding to the solution (**) ?

(Hint: usc that [% e d = /7 )

Next, consider (*) with k = 1 on the spatial domain [0,1]. Formulate a discrete
version of (*) based on an explicit time discretization when we assume the following
boundary condition:

plp =01t =plE=14) =1L

Divide the domain into M cells with points z1, x9,..., xas located at the center of
cach cell. The cell interface x;/; corresponds to 2 = 0 and zp741/2 to z = 1.
What is the stability condition for this scheme?

We consider the pressure like equation
ug = (d(u)ug)s, z € (0,1), 0<t,
u(z =0,t) = a(t), u(z = 1,t) = b(t),
u(z,t = 0) = up(x).
In the following we let
d{u) = u, a(t) =t, b(t) =1+t, ug(z) = .

- Show (by direct calculations) that u(z,t) = 2+t is a solution of this model problem
- Sketch the solution at time ¢ =1 and ¢ = 2.



(c) Consider the following discrete scheme:
U?_H _ u'? = L dr n n n n n
At Az? ( jery2luan = ufl = di_y poluf — ”j—l]),

where
. B d(u}) + d(u},)
2T T
Show that v} = z; +t" satisfies the discrete scheme. More precisely, show that
(i) {u}} satisfies the initial data
(ii) Assume that ul = z; +t" is the solution at time t*. Then show that u]”~+1 =
z; +t"! is a solution at time "1,



Exam Part B - Solving Nonlinear Equations & Modelling of Well Flow
There are 13 questions in total. Some formulas, equations and Matlab codes are found in
Appendixes. This part constitutes 50 % of exam.

Exercise 3 — Matlab Questions

a) What are the three types of matlab control statement ?

b) Assume that we have discretized a vertical well into 50 boxes. Each box has height dx = 50
meters. The vector p starting at bottom with the value p(1) and ending at top p(51) will contain
the pressure at different locations in the well. Note that p(i), will be the pressure at the
boundaries between the boxes. Write a matlab script that fills up/initializes this p vector with
values when we consider a mudweight of 1.7 sg. Try to make the code flexible such that we easily
can change number of boxes and mudweight.

c) The function z= f(x,y)=x" + y will give a surface in three dimensions. How will you write
the matlab code for a function that calculates and returns the z value based on the input values x

andy?

Exercise 4 — Bisection Method

a) We are given the function f(x)=x> —4,7-x + 3,7. Make a rough sketch of the graph

b) We shall now show that we can use the bisection method to pick out the largest of the two roots
of this function. The number of iterations shall be determined by the requirement that

abs(ftol)=0.02.

Iteration x1 X2 X3 f(x1) f(x2) f(x3)

1

2

3

etc

etc




Exercise 5 — Cuttings Transport

a) The figure to the right shows the
geometry of a planned casing program for .
a vertical well. We can assume that a
drilipipe with uniform outer diameter will
be placed inside this well, but that the
lowermost part of it (BHA or bottomhole
assembly) has a somewhat larger outer

diameter.

Where will you be most concerned with
checking if the suggested flowrate is
adequate for proper hole cleaning ?
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b) When working with the matlab code for the Larsen model, how did an increase in cuttings size,
mudweight and viscosities affect the minimum required fluid velocity to avoid the formation of
cuttings bed in inclined wells?



Exercise 6 — Well pressures

We have a 5000 meters TVD (true vertical depth) deep well. The mudweight measured at surface is
1.7 sg. We are cross circulating across the BOP to clean the annular space in the BOP because we
want to omit that potential hydrates (hydrocarbon ice) has formed there. This means that we
circulate down the kill line, through the BOP and up the chokeline. The well below the BOP is static.
The well is pressure dominated and we expect that this will change the effective downhole
mudweight by 0.03sg. The depth of the BOP is 1500 meters. The pressure gradient in the choke and
kill line was measured to be 0.01 bar/m when circulating with 500 lpm.

Riser

Choke & I

Kill Line

Closed
BOP

a) What will the ECD at the bottom of the well be when performing this type of circulation with
1000 Ipm ? (answer shall be provided in sg)

b) What will the pump pressure be in that case ?

c) When the well is static, we take a 2 m® kick at bottom of the well. We assume that the pressure
at the bottom is 850 bar and the temperature is 150 C. The well is closed in and the kick migrates
to the just beneath the closed BOP. Here we assume that the temperature is 50 C. What will the
pressure be when the kick has migrated to just beneath the closed BOP ?

d) How long time will it take for the kick to migrate from bottom to the closed BOP ?



Exercise 7 — Conservation laws

a) Ina steady state flow situation the mass rate M = Q- p is the same all places in the well when
considering a compressible fluid. If we have a compressible gas, how will Qand p change when
moving from the bottom of the well to the top of the well ?

b) Describe the solution technique used for solving the steady state two phase flow conservation
equations for a discretized well!



Appendix A - Some Units & Formulas
linch =2.54 cm = 0.0254 m

1feet=0.3048 m

1 bar = 100000 Pa

1sg=1kg/l (sg- specific gravity)

M=Q p M massrate (kg/s), Q Volumerate (m%/s), p density (kg/m°)
O=v-4 Q Volumerate (m®/s), v velocity m/s. A area m?
p=p-h-0.0981 p(bar), pdensity (sg), h—vertical depth (m)

% =C , from Ideal gas law, NB T is in Kelvin and the relation to Celsius is K="C + 273,15

P-V =C ,Boyles law (temperature is assumed constant)



Appendix B

Main.m

% Main program that calls up a routine that uses the bisection

% method to find a solution to the problem f(x) = 0.

% The search intervall [a,b] is specified in the main program.

% The main program calls upon the function bisection which again calls upon
% the function func.

% if error = 1, the search intervall has to be adjusted to ensure
% f(a) x f(b)<0

% Specify search intervall, a and b will be sent into the function
% bisection

a = 4.0;

b = 5.0;

% Call upon function bisection which returns the results in the variables
% solution and error.
[solution,error] = bisection(a,b);

solution % Write to screen.
error % Write to screen.

Bisection.m

function [solution,error] = bisection(a,b)

% The numerical solver implemented here for solving the equation f{x)= 0
% is called Method of Halving the Interval (Bisection Method)

% You will not find exact match for f(x)= 0. Maybe f(x) = 0.0001 in the
end.

% By using ftol we say that if abs(f(x))<ftol, we are satisfied. We can
% also end the iteration if the search interval [a,b] is satisfactory

small.
These tolerance values will have to be changed depending on the problem

to be solved.

o o

ftol = 0.01;

% Set number of iterations to zero. This number will tell how many

0]

% iterations are required to find a solution with the specified accuracy.
noit = 0;

x1l = a;
X2 = b;



£1. func (x1) ;
f2 = func(x2);

% First include a check on whether fi1xf2<0. If not you mu
% initial search intervall. If error is 1 and solution
% then you must adjust the search intervall [a,b].
if (£1*f2)>=0
error = 1;
solution = 0;
else
% start iterating, we are now on the track.

x3 = (x1+x2)/2.0;
£3 = func(x3);

while (f3>ftol | £3 < -ftol)
noit = noit +1 j

if (£3*f1) < O

X2 = X3;
else
X1l = %X3;

X3 = (x1+x2)/2.0;
£3 = func( B i
f1 = func(x1);

error = 0;
solution = x3;
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I
noit % This statement without ; writes out the number

the screen.

function f = func(x)

f = x*2-4%x+2;




Appendix C

% Program where the Larsen Cuttings Transport Model is implemented

% First specify all input parameters

do = 8.5; % Outerdiameter (in) ( 1 in = 0.0254 m)

di = 5; % Innerdiameter (in)

rop = 33 % Rate of Penetration - ROP ft/hr (1 ft = 0.3048m)

pv = 15 % Plastic viscosity (cP)

yp = 16 % Yield point (1bf/100ft2)

dcutt = 0.1 % Cuttings diameter (in) (1 inch = 0.0254 m)

mw = 10.833 % Mudweight (ppg - pounds per gallon) 1 ppg = 119.83 kg/m3.

0.83
rpm = 80 % rounds per minute
cdens = 19 % cuttings density (ppg - pounds per gallon)
angstart = 50 % Angle with the vertical

% vecut - Cuttings Transport Velocity (CTF in Larsens paper)

% verit Critical Transport fluid velocity (CTFV) in Larsens paper. his

% i1s the minimum fluid velocity required to maintain a continously upward

% movement of the cuttings.

% vslip Equivalent slip velocity (ESV) defined as the velocity difference
% between the cuttings and the drilling fluid

% verit = vecut+vslip

% All velocities are in ft/s.

% ua - apparent viscosity

% It should be noted that the problem is nested. Vecrit depends on vsli
% which again depends on an upd@ted/correct value for verit. An iterative
g{x(n)) will be used.

\

s approch on the form x(n+1)

ang (i) =angstart+i*5
veut = 1/((1-(di/do)”*2)*(0.64+18.16/rop)) ;

vslipguess = 3;

vcrit = veut + vslipguess;
% Find the apparent viscosity (which depends on the "guess" for vcrit)
ua = pv+ (5*yp*(do-di)) /verit

o}
(0]

rent viscosity". This needs to
"Iterative approach”.

% Find vslip based o
% updated until a ste
if (ua <= 53)

vslip = 0.0051*ua+3.006;

else

vslip = 0.02554* (ua-53)+3.28;

end

%$Now we have two estimates for vslip that can be compared and updated in a
% while loop. The loop will end when the vslip(n+l) and vslip (n) do not

% change much anymore. I.e the iterative solution is fcund.

le (abs(vslip-vslipguess))>0.01

vslipguess = vslip;

verit = veut + vslipguess;

% Find the apparent V"CCDElt] (which depends on the ‘“guess“ for vecrit)
ua = pv+ (5*yp*(do-di))/verit;



ind vslip based on the "guessed apparent viscosity". This needs to be
t s tained. "Iterative approach".

if (ua <= 53)

vslip = 0.0051*ua+3.006;

else
vslip = 0.02554* (ua-53)+3.28;
nd
n=n+1l;
vslip % Take away ; and you will se how vslip converges to a solution

end % End while loop

o

tor: CZ = -1.05D50cut+1.286

o

@}

% Cuttings size correction fa
CZ = -1.05*dcutt+1.286
% Mud Weight Correction factor (Bucancy effect)
if (mw>8.7)
CMW = 1-0.0333* (mw-8.7)
else
CMW = 1.0

end
% Angle correction factor
CANG = 0.0342*ang(1)-0.000233*ang(i)"2-0.213
velip = vslip*CZ*CMW*CANG; % Include correction factors.
% Find final minimum velocity required for cuttings transport (ft/s).

verit = vcut + vslip

veritms = verit*0.3048 % Velocity in m/s

Q = 3.14/4*((8.5%0.0254)"2-(5*0.0254) "2)*vcritms % (m3/s)
Q = Q*¥60*1000 % (lpm)

yrate (i) =0Q

end

plot (ang, yrate)



Appendix D - Steady State Model for Two Phase Flow

Conservation of liquid mass
0

—dp,av,)=0

oz

Conservation of gas mass
0

E(Apgagvg) =0

Conservation of momentum.

0 Ap ;.
= (08 )

Gas slippage model (simple):

v, =Kv,, +S (K=1.2,5=0.55)
Liquid density model (simple)
_ (P—po) . _ 3 =
p,(p) = p, +———, assume water: p, =1000kg/m’, p, =100000Pa, a, =1500 m/s
a
Gas density model (simple)

pg(p):a%,ideal gas: a, =316 m/s.

g
Friction model

The friction model presented here is for a Newtonian fluids like water. The general expression for the
frictional pressure loss gradient term is given by:

Apﬁ'i" = 2fpmixvmixabs(vmix)

Az W, &) o

out
A-(m?)

P, - phase densities (kg/m?>), liquid — > i=l, gas ->i =g
v, - phase velocities (m/s)

p - pressure (Pa)

g —gravity constant 9.81 m/s’



a; - phase volume fractions taking values between 0 and 1. &, + a, =1.
Puix = 0P + A, P, - mixture density

v

mix

=a,v, + o, v, - mixture velocity



