SPRING 2012
MPE690: SKETCH OF SOLUTION FOR TASK 2 AND 3

Task 2.
a) We have
kkrl
(¢sip)e + (prwn)z = 0, w=-—— (P)z = =N (P1)as l=w,o0
Assumptions:

e 1D, horizontal flow
e Constant k, ¢, p;, 1
® P.=po—pw =0, that is, p, = p, = p.
e two-phase: s, + 5, =1
Summing the two mass balance equations (after using the assumptions) gives:

D(Sw + 50)t + (U + Up)y =0
ie.
(U + o)z = 0, UT = Uy + U, = constant.
That is,

ur

up = —Arpg, Which implies that p, = N
T

for Ay = Ay + Ao

Aw(s)
Algorithm for computing solution of the water-flooding problem:

e Front height s* is given as the solution of: f/(s*) = f(s*)/s*.

e Position of front after a time T: a* = f/(s*)T

e Solution behind front is computed as: s = f'(s)T for s € [s*,1]

(s-shaped function)

Mass conservation must be ensured when a front is introduced in the unphysical solution
which gives rise to the condition

Ar=Ap (1)
where
A= [ FOT s =T(7(1) - (0) =T,
0
and
App=s"f'(s")T + ) f(s)T ds
=s"f{(s)T+T(f(1) = f(s7) = s"f/(s")T + T (1 = f(s7))
In view of (1) we get

1=s"f'(s*)+ (1 — f(s%)), which implies f(s*) =s"f'(s")
1



d) From fig 1. (left) we see that front height s* ~ 0.7. V = f/(s*) = fgi*) ~ 0.9/0.7 =
1.29 = 1.3 which gives breakthrough time T}

V-1, =1, which implies that T, =1/V ~ 7/9 ~ 0.78.
Oilrecovery R(T) up to breakthrough time is given by R(T) = T, that is,
R(Tb) = Tb =~ 0.78.

e) Similarly as above, we find that speed of front is

YM=05 _ f/(5¥) = 1(s7) ~0.8/0.5 = 1.6,

S*
which gives breakthrough time
yM=05 pM=05 = M= = 1)y ME05 £ 1/1.6 & 0.63 < 0.78 & T =320

M=0.5
Tb

Consequently, oil recovery for case with M = 0.5 at time T, = 0.78 is given by

1
R(Tb = 078) = S*(Tb) -1 +/ f/S)Tb ds
s*(T)

= s"(To) + Tp(1 = f(s"(T)))
~ 0.53 4 0.78(1 — 0.84) ~ 0.65.

where s*(T}) is the saturation which has travelled a distance 1 after time Ty, that is,
1'(s*(Tp)) - Ty = 1, that is

f(s*(Ty)) = 1/0.78 ~ 1.3.
From Fig.1 (right) for M = 0.5 we see that s*(T}) =~ 0.53. Moreover, we see from Fig.1
(left) that £(0.53) ~ 0.84.
Task 3.
a) Starting point is:
9(op) + Ou(pu) = q.

e ¢ = 0, incompressible fluid p =constant

e Darcy law: u = —%px (horizontal reservoir)
e rock compressibility: ¢ = %%, which implies that ¢ = ¢oe“?~P0). This can for small

¢ be approximated by ¢(p) = ¢o[l + ¢(p — po)] (Taylor expansion).

b)
n+1 n
b, —DP; K )
JTt] = Fx(azpr/Q - azp|j—1/2), j=1...,N
where
0zpl1/2 = 0zp|Ny1/2 = 0, (no-flux condition)
and
p"? —p"? '
axp\j+1/2=%7 j=2,...,N -1
Resulting scheme:
n+1 n
pim ot (@ ~0)
At A oPl11/2 )
n+1 n
P, —D; K )
%:E(axp|j+1/2_8xp|j—1/2), j=2,...,N—-1
n+1 n
Pn _—PN _ K <0 ) )
At Az :cp|N—1/2 .

Stability condition is: & AA;Z <1/2.
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FIGURE 1. Solution of discrete scheme for timestep ¢!, ¢2, ¢, ... .
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V- (ﬁgﬁg +pd970) = —a(ﬁbﬁgsg + d)pdgso) + dg
Let pf = 2 be densities at standard conditions, | = w, 0, ¢ and p¥ = —de_,
l VilsT g VaglsT
p L I =w,0,9
Vilre  Bi(p)’ Y
5o Mg s Vaglst  [Volst _ p Rs(p)
W WVolre " Volre  [Volst "9 Bo(p)
where we have used that pj = WZ:‘T‘JS -

Inserting these relations in the component equations gives the reformulated equations we
are searching for.

Gas Condensate Model:
oil component equation:

0
V : (5070 + pdoﬁg) = _a(d)posg + ¢pd050) + do

and
_ mae  WVaolst Vglst  Rsog(p) _ Waolst
Pdo = = Po ! = Po ) Rsog =
[Valre Volre  [Velst By(p) Volre
This gives
i Rsog(p) _ _g i Rsog(p) s
VBT By 10T o B, Ry el



