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Problem 1.

(a) Consider the linear transport equation

(∗) ut + a(x)ux = b(x, u), x ∈ R = (−∞,+∞)

with initial data

(∗∗) u(x, t = 0) = u0(x) = ϕ(x).

- Describe by words the transport effect represented by the term a(x)ux. Intuitively,
what is the impact from the source term b(x, u) on the solution u(x, t)?

(b) Let a(x) = x and b(x, u) = 0 in (*). Compute the solution u(x, t) by using the method
of characteristics. Verify that your solution satisfies (*) and (**).

(c) Let a(x) = x and b(x, u) = u in (*). Compute the solution u(x, t) and verify that
your solution satisfies (*) and (**).

(d) Now we choose ϕ(x) = exp(−x2).
- Make a rough sketch of the solution in (b) at time t = 1 and t = 2.
- Explain what is the main difference between this solution and the solution
computed in (c)?

(e) In the following we set a(x) = 1 and b = 0 in (∗) and consider a discretization of the
domain [0, 1]× [0, T ] with discretization parameters ∆x and ∆t.
More precisely, we divide the domain [0, 1] into cells 0, 1, . . . ,M,M +1 and timesteps
t0 = 0, t1 = ∆t, . . . , tn = n∆t. For the first and last cell we set un+1

0 = 0 and

un+1
M+1 = 0. In the interior part of the domain (j = 1, . . . ,M) we consider a discrete

scheme for the model (∗) of the form

(∗ ∗ ∗)
un+1
j − unj

∆t
+

1

∆x

(
Un
j+1/2 − Un

j−1/2

)
= 0, j = 1, . . . ,M.

- Describe how to define the flux terms Un
j+1/2 and Un

j−1/2 for the cells j = 1, . . . ,M

in order to obtain a stable scheme (up-wind scheme) and find an expression for un+1
j .

(f) It is known that the true solution of (∗) with a(x) = 1 and b(x, u) = 0 satisfies the
estimate ∫ 1

0
|u(x, t)| dx ≤

∫ 1

0
|u0(x)| dx.

- Demonstrate how to obtain a corresponding estimate for the discrete scheme obtained
from (∗ ∗ ∗).
(Hint: use the triangle inequality: |a+ b| ≤ |a|+ |b| and consider summation in space
over the cells j = 1, . . . ,M).
- What is the condition on the discretization parameters ∆t and ∆x we must impose
in order to obtain this estimate?
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Problem 2.

(a) In the following we consider a horizontal 1D reservoir.
- State the single-phase porous media mass balance equation in 1D (without source
term) and identify the various variables (rock and fluid).
- Introduce Darcy’s law and derive an equation for the pressure where it is assumed
that ϕ = ϕ(p), ρ = ρ(p), and permeability and viscosity are constant.
- Assuming a weakly compressible rock (compressibility cr is small) we get a linear
relation for ϕ(p).

ϕ(p) = ϕ0[1 + cr(p− p0)],

where p0 and ϕ0 are reference pressure and porosity. Use this together with the
assumption that the fluid is incompressible and show that we then can obtain a
pressure equation of the form

(∗) pt = κpxx, x ∈ R = (−∞,+∞),

and identify the constant parameter κ > 0.

(b) We now set κ = 1 in (*). Verify that

(∗∗) p(x, t) =
1√
π

∫ x
2
√

t

−∞
e−θ2dθ

satisfies (*).
What must be the initial condition corresponding to the solution (**) ?

(Hint: use that
∫∞
−∞ e−θ2dθ =

√
π )

(c) Next, consider (*) with κ = 1 on the spatial domain [0, 1]. Formulate a discrete
version of (*) based on an explicit time discretization when we assume the following
boundary condition:

p(x = 0, t) = p(x = 1, t) = 0.

Divide the domain into M cells with points x1, x2,. . . , xM located at the center of
each cell. The cell interface x1/2 corresponds to x = 0 and xM+1/2 to x = 1.
What is the stability condition for this scheme?

(d) Explain why we have the estimate∫ 1

0
p(x, t)2 dx ≤

∫ 1

0
p0(x)

2 dx

when we consider the domain [0, 1] and boundary conditions p(x = 0, t) = p(x =
1, t) = 0 for the model (∗) with initial data p(x, t = 0) = p0(x).



Exam Part B – Solving Nonlinear Equations & Modelling of Well Flow 
There are 13 questions in total.  Some formulas, equations and Matlab codes are found in 
Appendixes. This part constitutes 50 % of exam. 

Exercise 3 – Bisection Method 

 

a) In Appendix B, we have the function func which calculates the y value of 

.024)( 2 =+−= xxxf  for a given argument x. Write down the matlab code lines necessary to 
produce a figure similar to this. (the x values shall increase in increments of one) 

 
 

 
b) The function above has two roots. In Appendix B, you have a copy of three files (main, bisection, 

func) that can be used for solving this type of problems. Explain how you would change the code 
to find the “left” root. What is the requirement here? 

 

c) What is the meaning of the variable ftol  in the bisection function and what will happen if we for 
instance increase the value for this variable ? 

 

d) Show how the bisection method works by filling out a similar table as  below (We assume ftol = 
0.1): 

Iteration x1 x2 x3 f(x1) f(x2) f(x3) 
1 2 4 3 -2 2 -1 
2 3 4 3.5 -1 2 0,25 
3       
4       
5       
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Exercise 4 –  Cuttings Transport  

a) An empirical rule of thumb is that the cuttings transport is ensured if the annular flow velocity is 
larger than 200 ft/min in the horizontal part of the well. We are considering an 8 ½” hole. The 
drillstring OD is 5”. What should the flowrate be in liters per minute ? 
 

The Larsen model is an empirical model derived from a series of experiments on cuttings transport in 
horizontal/inclined flowloops. It gives a prediction of the minimum required annular velocity 
required for cuttings transport: mwsizeangcritslipcutcrit CCCvvvv )(+= where the latter was correction 

factors included to account for effects related to inclination, cuttings size and mudweight. 

 

b) How did cuttings size, mud weight and ROP (rate of penetration) affect the minimum required 
velocity for cuttings transport when you tested the model? 
 
 

c) When working with the Larsen model, you were asked to include the inclination angle correction 
factor and make a plot of the required flowrate for cuttings transport vs inclination angle. In 
Appendix C, the finished code/solution is given: Write down the statements or explain what had 
to be added/changed  in the program based on the solution proposal given in Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Exercise 5  - Well pressures 

 

a) We are at 3500 meters. The static mudweight is 1.6 sg. We are circulating the well with 2000 lpm 
(liters per minute). The annular friction is 25 bars.  What will the Equivalent circulating density 
ECD (in sg ) be ?  
 

b) Assume that we take a Kick of 4 m3. The kick has a pressure of 550 bar at bottom. When this kick 
is circulated to surface (open well), what kind of gas volumes can be expected at surface ? 

 
 

c) Why can there be a need for introducing a discretization of the well in combination with 
application of conservation laws to calculate well pressures more accurately? 

Exercise 6 – Conservation Laws and Flow Models 

Flowmodels can be used for describing pressures and flow in a well. They are based on a set of 
conservation laws for mass, momentum and possible energy in combination with closure laws. These 
are solved for the different boxes in a discretized well by an appropriate numerical method. The 
steady state conservation laws are given in Appendix D. 

a) What is the main difference between a steady state and a transient model with respect to what 
they describe?  
 

b) In an UBO operation we will inject gas at a rate of 40 m3/min. The pressure at surface is 1 bar. 
The pressure at bottom of the well is 200 bars. What will the gas volume rate (m3/s) be at 
bottom. The flow is steady state  (check formulas in Appendix A &D) 

 
 

c) Describe briefly the solution technique used for solving the steady state two phase  flow 
conservation equations for a discretized well. 



 

Appendix A – Some Units & Formulas 
1 inch =2.54 cm = 0.0254 m 

1 feet = 0.3048 m 

1 bar = 100000 Pa 

1 sg = 1 kg/l     (sg -  specific gravity) 

ρ⋅=QM                    M massrate (kg/s), Q Volumerate  (m3/s), ρ density (kg/m3) 

AvQ ⋅=                      Q Volumerate  (m3/s),  v  velocity m/s. A  area m2 

0981.0⋅⋅= hp ρ     p (bar), ρ density ( sg), h – vertical depth (m) 

C
T

VP
=

⋅
 , from Ideal gas law 

CVP =⋅  , Boyles law  (temperature is assumed constant) 

  



 

Appendix B 
 

Main.m 
 

% Main program that calls up a routine that uses the bisection  
% method to find a solution to the problem f(x) = 0. 
% The search intervall [a,b] is specified in the main program.  
% The main program calls upon the function bisection which again calls upon 
% the function func. 
  
% if error = 1, the search intervall has to be adjusted to ensure  
% f(a) x f(b)<0 
  
% Specify search intervall, a and b will be sent into the function 
% bisection 
 a = 4.0; 
 b = 5.0; 
   
% Call upon function bisection which returns the results in the variables  
% solution and error.  
  [solution,error] = bisection(a,b); 
  
 solution % Write to screen. 
 error  % Write to screen. 
 

Bisection.m 
 

function [solution,error] = bisection(a,b) 
  
% The numerical solver implemented here for solving the equation f(x)= 0  
% is called Method of Halving the Interval (Bisection Method) 
  
% You will not find exact match for f(x)= 0. Maybe f(x) = 0.0001 in the 
end.  
% By using ftol we say that if abs(f(x))<ftol, we are satisfied. We can  
% also end the iteration if the search interval [a,b] is satisfactory 
small.  
% These tolerance values will have to be changed depending on the problem  
% to be solved. 
  
  
 ftol = 0.01; 
 
% Set number of iterations to zero. This number will tell how many 
 % iterations are required to find a solution with the specified accuracy. 
  
  noit = 0; 
  
  x1 = a; 
  x2 = b; 



  
  
  f1 = func(x1); 
  f2 = func(x2); 
  
  
%   First include a check on whether f1xf2<0. If not you must adjust your 
%   initial search intervall. If error is 1 and solution is set to zero,  
%   then you must adjust the search intervall [a,b]. 
  
  
 if (f1*f2)>=0  
     error = 1; 
     solution = 0; 
 else 
 % start iterating, we are now on the track. 
     x3 = (x1+x2)/2.0; 
     f3 = func(x3); 
  
     while (f3>ftol | f3 < -ftol) 
        noit = noit +1 ; 
                   
        if (f3*f1) < 0  
           x2 = x3; 
        else    
           x1 = x3; 
        end  
         
        x3 = (x1+x2)/2.0;  
        f3 = func(x3); 
        f1 = func(x1); 
         
     end  
     error = 0; 
     solution = x3; 
     noit % This statement without ; writes out the number of iterations to 
the screen. 
 end   
 

func.m 
function f = func(x) 
  
  
  f = x^2-4*x+2; 
 

  



Appendix C 
% Program where the Larsen Cuttings Transport Model is implemented 
  
%  First specify all input parameters: 
  
do = 8.5; % Outerdiameter (in) ( 1 in = 0.0254 m) 
di = 5; % Innerdiameter   (in)  
rop = 33 % Rate of Penetration - ROP ft/hr (1 ft = 0.3048m) 
pv = 15 % Plastic viscosity (cP)  
yp = 16 % Yield point (lbf/100ft2) 
dcutt = 0.1 % Cuttings diameter (in) (1 inch = 0.0254 m) 
mw = 10.833 % Mudweight (ppg - pounds per gallon) 1 ppg = 119.83 kg/m3. 
rpm = 80 % rounds per minute 
cdens = 19 % cuttings density (ppg - pounds per gallon) 
angstart = 50 % Angle with the vertical 
  
% vcut - Cuttings Transport Velocity (CTF in Larsens paper) 
% vcrit - Critical Transport fluid velocity (CTFV) in Larsens paper. This 
% is the minimum fluid velocity required to maintain a continously upward 
% movement of the cuttings. 
% vslip - Equivalent slip velocity (ESV) defined as the velocity difference 
% between the cuttings and the drilling fluid 
% vcrit = vcut+vslip 
% All velocities are in ft/s. 
% ua - apparent viscosity 
  
% It should be noted that the problem is nested. Vcrit depends on vslip 
% which again depends on an updated/correct value for vcrit. An iterative 
% approch on the form  x(n+1) = g(x(n)) will be used. 
  
for i = 1:8 
  
ang(i)=angstart+i*5     
vcut = 1/((1-(di/do)^2)*(0.64+18.16/rop)); 
  
vslipguess = 3; 
vcrit = vcut + vslipguess; 
  
% Find the apparent viscosity (which depends on the "guess" for vcrit) 
ua = pv+ (5*yp*(do-di))/vcrit 
  
% Find vslip based on the "guessed apparent viscosity". This needs to be  
% updated until a stable value is obtained. "Iterative approach". 
if (ua <= 53) 
 vslip = 0.0051*ua+3.006; 
else  
 vslip = 0.02554*(ua-53)+3.28; 
end  
  
%Now we have two estimates for vslip that can be compared and updated in a  
% while loop. The loop will end when the vslip(n+1) and vslip (n) do not 
% change much anymore. I.e the iterative solution is found. 
n=1; 
while (abs(vslip-vslipguess))>0.01 
 vslipguess = vslip; 
 vcrit = vcut + vslipguess; 
% Find the apparent viscosity (which depends on the "guess" for vcrit) 
  ua = pv+ (5*yp*(do-di))/vcrit; 



  
% Find vslip based on the "guessed apparent viscosity". This needs to be  
% updated until a stable value is obtained. "Iterative approach". 
  if (ua <= 53) 
   vslip = 0.0051*ua+3.006; 
  else  
   vslip = 0.02554*(ua-53)+3.28; 
  end 
  n=n+1; 
  vslip  % Take away ; and you will se how vslip converges to a solution 
end % End while loop 
  
%  
% Cuttings size correction factor: CZ = -1.05D50cut+1.286 
 CZ = -1.05*dcutt+1.286 
% Mud Weight Correction factor (Buoancy effect) 
  if (mw>8.7) 
  CMW = 1-0.0333*(mw-8.7) 
  else 
  CMW = 1.0 
  end 
  
% Angle correction factor   
  
CANG = 0.0342*ang(i)-0.000233*ang(i)^2-0.213 
  
vslip = vslip*CZ*CMW*CANG;   % Include correction factors. 
  
% Find final minimum velocity required for cuttings transport (ft/s). 
  
vcrit = vcut + vslip 
  
vcritms = vcrit*0.3048 % Velocity in m/s 
  
Q = 3.14/4*((8.5*0.0254)^2-(5*0.0254)^2)*vcritms % (m3/s) 
Q = Q*60*1000  % (lpm) 
  
yrate(i)=Q 
end  
  
plot(ang,yrate) 
 

 

 

 

 

 

 

 



Appendix D – Steady State Model for Two Phase Flow 
Conservation of liquid mass 

0)( =
∂
∂

lll vA
z

αρ                                                                                                                                                                                                                             

Conservation of gas mass 

0)( =
∂
∂

ggg vA
z

αρ       

Conservation of momentum. 

)(
z

p
gp

z
fric

mix ∆

∆
+−=

∂
∂ ρ           

Gas slippage model (simple): 

SKvv mixg +=  (K=1.2, S = 0.55)                                                                                                                 

Liquid density model (simple) 

2

)(
)(

L

O
lol a

pp
p

−
+= ρρ , assume water: 1000=loρ kg/m3, PapO 100000= , 1500=La m/s    

Gas density model (simple) 

2)(
g

g a
pp =ρ , ideal  gas: 316=ga m/s.                                                                                                  

Friction model 

The friction model presented here is for a Newtonian fluids like water. The general expression for the 
frictional pressure loss gradient term is given by: 

)(
)(2

inout

mixmixmixfric

dd
vabsvf

z
p

−
=

∆

∆ ρ
  (Pa/m)        

A - (m2) 

iρ - phase densities (kg/m3), liquid – > i=l, gas ->i =g 

iv  - phase velocities (m/s) 

p - pressure (Pa) 

−g gravity constant 9.81 m/s2 



iα  - phase volume fractions taking values between 0 and 1. 1=+ gl αα . 

ggllmix ραραρ += - mixture density 

ggllmix vvv αα += - mixture velocity 
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