
Solution: Modeling part.

Task 2.

(a) We have

ut =
∂

∂t
u0(x− ct) = u′

0(x− ct) · ∂

∂t
(x− ct) = u′

0(x− ct) · (−c)

ux =
∂

∂x
u0(x− ct) = u′

0(x− ct) · ∂

∂x
(x− ct) = u′

0(x− ct).

Hence,

ut + cux = −cu′
0(x− ct) + cu′

0(x− ct) = 0.

The solution can also be written as

u(x, t) = u0(x− ct) =

{
1, 0.4 ≤ x− ct ≤ 0.6;
0, otherwise.

That is,

u(x, t) = u0(x− ct) =

{
1, 0.4 + ct ≤ x ≤ 0.6 + ct;
0, otherwise.

The solutions is obtained by moving the initial box towards right with a speed equal to c.
The boundary condition at x = 1 can only hold before the box reaches x = 1. The box
will reach the right boundary x = 1 when

0.6 + cT b = 1, ⇒ cT b = 0.4.

(b) Upwind flux:

Un
j+1/2 = un

j , Un
j−1/2 = un

j−1.

Resulting scheme

un+1
j = un

j − λ(un
j − un

j−1), λ =
∆t

∆x
.

See the text document Project-Transport1 (Section 1.4) for the calculations that show
that

M∑
j=1

|un+1
j | ≤

M∑
j=1

|un
j |,

if 0 ≤ λ ≤ 1.

(c) We have

(ϕρ)t + (ρu)x = 0,

with ϕ(p) porosity, ρ(p) density, and u Darcy velocity.
Darcy’s law

u = −k

µ
px,

inserted gives

(ϕ(p)ρ(p))t = (ρ(p)
k

µ
px)x.

Weakly compressible rock:

ϕ(p) = ϕ0e
cr [p−p0],

linear version

ϕ(p) = ϕ0(1 + cr[p− p0]).

We assume that ρ(p) = ρ0 (constant). Plugging these two relations into equation gives

(ϕ0(1 + cr[p− p0]))t = (
k

µ
px)x.
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That is

ϕ0crpt =
k

µ
(px)x,

if k, µ are constant. This gives pt = κpxx with

κ =
k

µϕ0cr
.

(d) Continuous p0(x) if

2 + a = b+ 1 ⇒ a+ 1 = b.

Physical interpretation: Fluid in [0, 1/2] will flow in left direction, whereas fluid in [1/2, 1]
will towards right as the pressure will decrease.
Stationary solution:

pxx = 0 ⇒ p(x) = Cx+D.

Boundary conditions give that

p(x) = [b− a]x+ a.

Stationary fluid velocity

u = −k

µ
px = −k

µ
(b− a).

(e) We refer to Section 1.5 in the note Project-Pressure1.

Task 3. This exercise deals with the Black-Oil Model (BOM).

(a) Main assumptions:
- 3 phases: water, oil, gas
- 3 components: water, oil, gas
- no phase transition between water and hydrocarbons
- a part of the gas component can be dissolved in oil (and flows together with the oil
component in the oil phase)

- all of the oil component is in the oil phase
- constant temperature

Different mass components that fill pore space:
1 water component in water phase: ρwSw

1 oil component in oil phase: ρoSo

1 gas component in oil phase: ρdgSo

1 gas component in gas phase: ρgSg

Continuity equations, respectively, for the water component, the oil component, and the
two gas components:

∇ · (ρw
→
vw) = − ∂

∂t
(ϕρwSw) + qw

∇ · (ρo
→
vo) = − ∂

∂t
(ϕρoSo) + qo

∇ · (ρdg
→
vo +ρg

→
vg) = − ∂

∂t
(ϕρdgSo + ϕρgSg) + qg

→
vl, l = w, o, g (velocity fields)
Sl, l = w, o, g (saturations) such that Sw + So + Sg = 1
ϕ porosity



3

(b) For the densities at standard conditions we have:

ρsl =
ml

[Vl]ST
, l = w, o, g, ρsdg =

mdg

[Vdg]ST
= ρsg

and volume factors Bl and gas-oil solution ratio Rs are defined as

Rs =
[Vdg]ST

[Vo]ST
, Bl =

[Vl]RC

[Vl]ST
, l = w, o, g

Using this, we have

ρw =
mw

[Vw]RC
= ρsw

[Vw]ST

[Vw]RC
=

ρsw
Bw

ρo =
mo

[Vo]RC
= ρso

[Vo]ST

[Vo]RC
=

ρso
Bo

ρg =
mg

[Vg]RC
= ρsg

[Vg]ST

[Vg]RC
=

ρsg
Bg

ρdg =
mdg

[Vo]RC
= ρsg

[Vdg]ST

[Vo]RC
· [Vo]ST

[Vo]ST
=

ρsg
Bo

Rs

Inserting these relations in equations of a), dividing by the constant density ρsl , we arrive
at

∇ · ( 1

Bw

→
vw) = − ∂

∂t
(ϕ

Sw

Bw
) +

qw
ρsw

∇ · ( 1

Bo

→
vo) = − ∂

∂t
(ϕ

So

Bo
) +

qo
ρso

∇ · (Rs

Bo

→
vo +

1

Bg

→
vg) = − ∂

∂t
(ϕ

RsSo

Bo
+ ϕ

Sg

Bg
) +

qg
ρsg

Task 4.

(a) See the text document Theory-B-L-base for details. Mass conservation gives the relation

f ′(s∗) =
f(s∗)

s∗
.

(b) From Fig. we see that s∗ ≈ 0.75. Speed V = f ′(s∗) = f(s∗)/s∗ ≈ 0.9/0.75 = 1.2. At time
T = 0.5, position of front is

x∗ = V T = 1.2 · 0.5 = 0.6.

Behind front:

s = 0.8 f ′(0.8) ≈ 0.75 ⇒ xs = 0.75 · 0.5 = 0.375.

s = 0.9 f ′(0.9) ≈ 0.125 ⇒ xs = 0.125 · 0.5 = 0.06.

(c) The fractional flow f for M = 0.5 lies above the one corresponding to M = 4. This gives
rise to a lower front height and a larger slope, i.e., a faster front. See Fig. 1.
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Figure 1. Left: Solution in (b). Right: Solution in (c).


