
Solution Pet 510 Fall 2013: Part A

Problem 1.

(a) Consider the linear transport equation

(∗) ut + a(x)ux = b(x, u), x ∈ R = (−∞,+∞), u(x, t = 0) = u0(x) = ϕ(x).

- Transport effect represented by the term a(x)ux: If a(x) < 0, then a transport from
right towards left. If a(x) > 0, transport from left towards right.
Impact from the source term b(x, u): If b > 0 this will lead to a growth of u, whereas
b < 0 will imply that u is reduced?

(b) Let a(x) = x and b(x, u) = 0 in (*). Characteristic X(t) is given

d

dt
X(t) = X(t), X(t = 0) = x0,

which gives the solution X(t) = x0e
t. Moreover,

d

dt
u(X(t), t) = ux

dX

dt
+ ut = uxX(t) + ut = 0,

since u is a solution of ut + xux = 0 and satisfies ut +X(t)ux = 0 along X(t), i.e.

u(X(t), t) = u(x0, t = 0) = ϕ(x0) = ϕ(X(t)e−t).

Conclusion: u(x, t) = ϕ(xe−t).
Check:
(i) We see that u(x, t = 0) = ϕ(xe0) = ϕ(x), thus, initial data is satisfied.
(ii) Moreover, we see that

ut = ϕ′(xe−t)(xe−t)t = ϕ′(xe−t)x · (−1) · e−t

and

ux = ϕ′(xe−t)(xe−t)x = ϕ′(xe−t)e−t

so, clearly, ut + xux = 0.

(c) Let a(x) = x and b(x, u) = u in (*). Characteristic X(t) is given as above. Moreover,

d

dt
u(X(t), t) = ux

dX

dt
+ ut = uxX(t) + ut = u(X(t), t),

since u satisfies ut + xux = u. From this we get∫ u(X(t),t)

u(x0,t=0)

1

u
du =

∫ t

0
dt

which gives us

ln(u(X(t), t))− ln(ϕ(x0)) = t, or u(X(t), t) = ϕ(x0)e
t = ϕ(X(t)e−t)et.

Conclusion: u(x, t) = ϕ(xe−t)et

Check:
1
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Figure 1. Left: Plot of u in (b) at times t = 1 and t = 2. Right: Comparison
of u from (b) and (c) computed at time t = 1.

(i) We see that u(x, t = 0) = ϕ(xe0)e0 = ϕ(x), thus, initial data is satisfied.
(ii) Moreover, we see that

ut = ϕ′(xe−t)(xe−t)t · et + ϕ(xe−t) · (et)t
= −ϕ′(xe−t)xe−t · et + ϕ(xe−t)et = −ϕ′(xe−t)x+ ϕ(xe−t)et

and

ux = ϕ′(xe−t)(xe−t)x · et = ϕ′(xe−t)e−t · et = ϕ′(xe−t)

Clearly, ut + xux = ϕ(xe−t)et = u
(d) Now we choose ϕ(x) = exp(−x2).

- Solution of (b) at times t = 1 and t = 2 is shown in Fig. 1 (left).
- Solution of (b) and (c) at time t = 1 are shown in Fig. 1 (right). Main difference is
the growth in u for solution computed in part (c).

(e) Un
j+1/2 = unj and Un

j−1/2 = unj−1. This gives the scheme un+1
j = unj − ∆t

∆x(u
n
j − unj−1).

(f) Estimate for the discrete scheme:

|un+1
j | = |unj (1− λ) + λunj−1| ≤ |unj (1− λ)|+ |λunj−1| = (1− λ)|unj |+ λ|unj−1|

Here we first have used the triangle inequality |a+b| ≤ |a|+|b|. Then we have assumed
that 0 ≤ λ ≤ 1 in order to ensure that (1 − λ) ≥ 0 and λ ≥ 0. Now we sum over all
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cells from 1 to M

M∑
j=1

|un+1
j | ≤ (1− λ)

M∑
j=1

|unj |+ λ

M∑
j=1

|unj−1|

= (1− λ)

M∑
j=1

|unj |+ λ

M−1∑
j=0

|unj | (shift of index in last sum)

≤ (1− λ)
M∑
j=1

|unj |+ λ
M∑
j=1

|unj | (add |unM | in the last sum)

=

M∑
j=1

|unj |.

Hence, the conclusion is that
∑M

j=1 |u
n+1
j | ≤

∑M
j=1 |unj | ≤ . . . ≤

∑M
j=1 |u0j |,

Condition on the discretization parameters ∆t and ∆x: 0 ≤ λ = ∆t
∆x ≤ 1

Problem 2.

(a) Mass balance

(ϕρ)t + (ρu)x = 0,

where ϕ, ρ, and u are porosity, fluid density, and fluid velocity (Darcy velocity).
Darcy’s law:

u = −k

µ
px

This gives

(ϕ(p)ρ(p))t = (
k

µ
ρ(p)px) =

k

µ
(ρ(p)px)x

Using assumptions on ϕ and ρ we get

ρϕ0[1 + cr(p− p0)]t = ρϕ0crpt =
k

µ
ρpxx.

This gives us

pt = κpxx, κ =
k

µϕ0cr

(b) Verify that

p(x, t) =
1√
π

∫ x
2
√

t

−∞
e−θ2dθ

is a solution of pt = pxx. Note that F (x, t) =
∫ b(x,t)
−∞ G′(θ)θ = G(b(x, t)) − G(−∞).

Consequently,

F (x, t)t = G′(b)bt, F (x, t)x = G′(b)bx.
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Using this with b = x
2
√
t
and G′(θ) = e−θ2 we get

pt =
1√
π
e−b2bt =

1√
π
e
−[ x

2
√

t
]2
[ x

2
√
t

]
t
=

x

2
√
π
e
−[ x

2
√

t
]2 · −1

2
t−3/2

and

px =
1√
π
e−b2bx =

1√
π
e
−[ x

2
√

t
]2
[ x

2
√
t

]
x
=

1

2
√
πt1/2

e
−[ x

2
√

t
]2

and

pxx =
1

2
√
πt1/2

[
e−[x

2

4t
]
]
x
= − 1

2
√
πt1/2

e−[x
2

4t
] · [x

2

4t
]x == − x

4
√
πt3/2

e−[x
2

4t
]

Clearly, pt = pxx.
Initial condition:

x < 0 : t → 0+ ⇒ x

2
√
t
→ −∞ ⇒ p(x, t) → 1√

π

∫ −∞

−∞
e−θ2dθ = 0

and

x > 0 : t → 0+ ⇒ x

2
√
t
→ +∞ ⇒ p(x, t) → 1√

π

∫ +∞

−∞
e−θ2dθ = 1

(c) Discrete scheme (explicit in time):

pn+1
j − pnj

∆t
=

1

∆x
([px]

n
j+1/2 − [px]

n
j−1/2)

j = 1, . . . ,M − 1 : [px]j+1/2 =
pj+1 − pj

∆x

x = 0 : [px]1/2 =
p1 − 0

∆x/2

x = 1 : [px]M+1/2 =
0− pM
∆x/2

Stability condition: ∆t
∆x2 ≤ 1

2

(d) Estimate: We multiply the equation by p and get

ppt = pxxp

or
1

2
(p2)t = (pxp)x − pxpx.

Next, we integrate in space from 0 to 1:

1

2

d

dt

∫ 1

0
p2 dx =

∫ 1

0
(pxp)x dx−

∫ 1

0
(px)

2 dx.

For the first term on the right hand side we get:∫ 1

0
(pxp)x dx = pxp|x=1

x=0 = 0,
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using the boundary condition. Consequently, we have

1

2

d

dt

∫ 1

0
p2 dx = −

∫ 1

0
(px)

2 dx ≤ 0

which gives the inequality d
dt

∫ 1
0 p2 dx ≤ 0. We finally integrate in time over [0, t].



Exam Part B – Solving Nonlinear Equations & Modeling of Well Flow 
 

Exercise 3  

a) Her kan det være mange varianter som kan være riktig. 

a=-2; 

b= 6; 

dx = 1; 

n = (b-a)/dx; 

for i = 1:n+1 

x(i)=a+(i-1)*dx; 

y(i) =func(x(i)); 

end  

plot(x,y);  

 

  
b) Sette søkeintervall til feks [0,1]Forandre main til:  a = 0, b = 1. Kravet er at funksjonen skal 

skifte fortegn i intervallet hvis vi skal klare å finne en løsning på f(x) = 0.  
c) ftol sier noe om nøyaktighet på løsning. Vi er fornøyde med løsningen x3 hvis f(x3) < ftol.  

Hvis vi øker ftol vil vi få mer unøayktig løsning. Man kan og visualisere dette som en 
retangulær boks som roten må befinne seg inne og denne har høyde 2xftol. 
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d)Show how the bisection method works by filling out the table below (We assume ftol = 0.1): 

Iteration x1 x2 x3 f(x1) f(x2) f(x3) 
1 2 4 3 -2 2 -1 
2 3 4 3.5 -1 2 0,25 
3 3 3.5 3.25 -1 0,25 -0,43 
4 3.25 3.5 3.3750 -0,4374 0,25 -0.1094 
5 3.3750 3.5 3.4375 -0.1094 0,25 0.0664 
       
 

Exercise 4 

a)I inch = 0.0254 m. This gives ID = 0.127 m. OD = 0.2159 m.  

.0239.0)127.02159.0(
4
14.3 222 mA =−=  Convert velocity v to m/s. 

s
m

s
mftv 016.1

60
3048.0200

min
200 =

⋅
== . 

min
1458

min
6010000243.00243.00239.0016.1

33 ll
s

m
s

mAvQ =⋅⋅==⋅=⋅= .  

b) Smaller cuttings-> need larger velocity to transport cuttings. Higher ROP ->need larger velocity to 
transport cuttings. Larger mudweight gives more buouancy and gives lower required velocity. 

c) We needed to introduce a forloop starting at the beginning of the program and ending at the end 
of the program. Inside this loop we let angle increase  

ang(i)=angstart+i*5  . 
  
where we defined angstart = 50;  among the other variables in the top part of the program, We then 
implement the correction factor and include this is as correction term in the vslip calculation: 

CANG = 0.0342*ang(i)-0.000233*ang(i)^2-0.213 
  
vslip = vslip*CZ*CMW*CANG;   % Include correction factors 

Finally we take care of the calculated rate for each angle variation through the statement: 

yrate(i)=Q 
 

After ending the for loop, we just write plot(ang,yrate); 

 

 

 

 

 



Exercise 5 

a) ECD = (3500x1.6x0.0981+25)/(3500x0.0981)=1.67 sg 
b) Use Boyles law with 1 bar at surface: V2=(V1xP1)/P2=4x550/1=2200 m3 
c) Because we then can take into account that e.g. mud density and hydrostatic pressure will 

depend on pressure and temp downhole. Pressures will be calculated locally in each cell and 
the results will be summarized in a net pressure effect. 
 (The student might also mention that the friction will be calculated more properly also since 
local variations are taken into account, but it is suff if they explain that mud depend on temp, 
pressure) 

Exercise 6 

a) A steady state flow describes constant flow . A transient model describes flow that changes 
in time 

b) The gas density at surface will be 1 kg/m3 using the ideal gas law in App D. The mass flow 

rate will be: skg
m
kg

s
mQM /667.01

60
40

3

3

=⋅=⋅= ρ  which will be constant all over in the 

well- The gas density at bottom is 3/200
316316

100000200 mkgg =
⋅

⋅
=ρ . The flow rate will be:

smMQ /300333.0
200
667.0

===
ρ

 

c) The well is first discretized into cells/nodes. We willk now the massflowrates at bottom and 
the surface outlet pressure on top. We start by guessing for the bottomhole pressure. Then 
we use the closure laws in AppD to calc the remaining flow varibles in node 1. The the three 
conservation laws in combination with closure laws are used to find the flow varibles in node 
2. Then we proceed to the next node and so on until we reach the outlet.The calculated 
pressure at outlet must be equal to Psurf. If not, the BHP must be guessed again. This 
reduced to  finding the zero of the following function f(puess,bottom) =Pcalc, outlet-
Psurf,given. This will be found using e.g. the bisection method. (important to understand the 
last part also here). The method is sometimes called the shooting technique. 

 


	Exam Part BLosnNew.pdf
	Exam Part B – Solving Nonlinear Equations & Modeling of Well Flow


