
Problem 1.

(a) Solution:

u(x, t) = v(x, t̂), t̂ =
t

ε
Then

ut =
∂

∂t
v(x, t̂) =

∂

∂t̂
v(x, t̂)

∂t̂

∂t
=

1

ε
vt̂

and

ux =
∂

∂x
v(x, t̂) = vx, uxx = vxx

Thus,
vt̂ = εut = uxx = vxx

Note also that v(x, t̂ = 0) = u(x, t = 0), hence v(x, t̂) must have a solution of the form
(***):

v(x, t̂) =
1√
π

∫ x

2
√

t̂

−∞
e−θ2dθ =

1√
π

∫ x
√

ε

2
√
t

−∞
e−θ2dθ = u(x, t)

(b) Solution:

u(x, t) = v(x̂, t), x̂ = x
√
ε

Then

ut =
∂

∂t
v(x̂, t) = vt

and

ux =
∂

∂x
v(x̂, t) =

∂

∂x̂
v(x̂, t)

∂x̂

∂x
= vx̂

√
ε, uxx = vx̂x̂ε

Thus,

vt = ut =
1

ε
uxx = vx̂x̂

Note also that v(x̂, t = 0) = u(x, t = 0), hence v(x̂, t) must have a solution of the form
(***):

v(x̂, t) =
1√
π

∫ x̂
2
√

t

−∞
e−θ2dθ =

1√
π

∫ x
√

ε

2
√
t

−∞
e−θ2dθ = u(x, t)

Choosing a ”small” ε implies that the upper limit x
√
ε

2
√
t
becomes ”small” so that a

large x must be chosen to give the same value u(x, t). This corresponds to a strong
smearing of the initial front at x = 0. Choosing a ”large” ε has the opposite effect,
i.e., a weaker smearing of the front.

(c) Solution:
Let

y =
x√
t
, u(x, t) = v(y)

Then

ut =
∂

∂t
v(y) =

dv

dy
(y)

∂y

∂t
= v′(y)(−1

2
)
x

t3/2
1



2

Similarly,

ux = v′(y)
∂y

∂x
= v′(y)

1

t1/2
, uxx = v′′(y)

1

t
Hence,

ut = uxx correponds to v′(y)(−1

2
)
x

t3/2
= v′′(y)

1

t

which is the same as

0 =
1

2
v′(y)y + v′′(y)

Since
x

t1/2
→

{
−∞, x < 0;
+∞, x > 0

when t goes towards 0 and u(x, t) goes towards u0(x), then

v(−∞) = u0(x < 0) = 0, v(+∞) = u0(x > 0) = 1.

(d) Solution:

ut = uxx + g(u), x ∈ (0, 1)

u(0, t) = u(1, t) = 0

u(x, t = 0) = u0(x)

We multiply equation by u which gives

1

2
(u2)t = uxxu+ ug(u) = (uxu)x − u2x + ug(u)

Integrating over [0, 1]

1

2

d

dt

∫ 1

0
u2dx =

∫ 1

0
(uxu)xdx−

∫ 1

0
u2xdx+

∫ 1

0
ug(u)dx

= (uxu)
∣∣∣x=1

x=0
−
∫ 1

0
u2x +

∫ 1

0
ug(u)dx

= 0−
∫ 1

0
u2x +

∫ 1

0
ug(u)dx ≤

∫ 1

0
ug(u)dx

If we assume that ug(u) ≤ 0, then we get

d

dt

∫ 1

0
u2dx ≤ 0.

An example is g(u) = −u which gives ug(u) = −u2 ≤ 0 for all u.

(e) Solution:

pt = κpxx, x ∈ (0, 1), κ =
k

ϕ0(c+ cr)

p(0, t) = p(1, t) = 1

p(x, t = 0) = p0(x)

with initial data

(∗) p0(x) =

{
1− 2x, 0 ≤ x < 1

2 ;
2x− 1, 1

2 ≤ x ≤ 1.
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Figure 1. Curves show change in profiles from initial state towards stationary state.

Scheme:

Pn+1
j − Pn

j

∆t
= κ

1

∆x

(
[Px]

n
j+1/2 − [Px]

n
j−1/2

)
, j = 1, . . . ,M

where

[Px]
n
j+1/2 =

Pn
j+1 − Pn

j

∆x
, j = 1, . . . ,M − 1

[Px]
n
1/2 =

Pn
1 − 1

∆x/2

[Px]
n
M+1/2 =

1− Pn
M

∆x/2

Stability condition:

µ =
∆t

∆x2
≤ 1

2

(f) Solution: Sketch of the initial data p0(x) and the solution p(x, t) are shown in Fig. 1.
See the right figure for plots of fluid velocity u0(x) and u(x, t) based on Darcy law
u = − k

µpx = −px.

Corresponding to a decreasing pressure there is a fluid flow from left towards the
center x = 0.5, whereas there is flow of fluid from right towards x = 0.5 associated
with the increasing pressure. At x = 0.5 the fluid is stagnant.
Stationary solution: p = 1 and u = 0.

Problem 2. We consider a transport equation of the form

(B1) ut + xux = b(x, t, u), x ∈ (−∞,+∞)

(B2) u(x, t) = u0(x) = exp(−x2)

(a) Compute exact solution when b(x, t, u) = −u
- make a sketch of typical characteristics in the x− t coordinate system
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Figure 2. Numerical solution computed by using the scheme described in
point (b) below which is compared with the exact solution at time T = 0.5

Solution:

dX

dt
= X(t), X(t = 0) = x0 ⇒ X(t) = x0e

t

Thus,

du

dt
(X(t), t) = −u(X(t), t) ⇒ lnu(X(t), t)− lnu0(x0) = −t

⇒ u(X(t), t) = u0(x0)e
−t

Solution is

u(x, t) = u0(xe
−t) · e−t.

The last term e−t comes from the source term b(u) = −u.

(b) We now consider the model (B1) with b = 0. Consider a discretization of the spatial
domain [−5, 5]. Assume that the domain is divided into 2M cells. It is assumed that
un+1
1 = un+1

2M = 0. Formulate a stable discrete scheme for cells 2, . . . , 2M − 1.
Solution:

j = 2, . . . ,M : un+1
j = unj − λxj(u

n
j+1 − unj ) (since xj < 0)

j = M + 1, . . . , 2M − 1 : un+1
j = unj − λxj(u

n
j − unj−1) (since xj > 0)

(c) For the case considered above where the source term b = 0, show that the solution u
of (B1) and (B2) satisfies the relation∫ ∞

−∞
u(x, t)dx = et

∫ ∞

−∞
u0(x)dx.

Solution: Write equation in the form

ut + (xu)x − u = 0
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and integrate in space over (−∞,∞) and use that (xu)(±∞, t) = 0. This gives the
ODE

dv

dt
= v, v =

∫ ∞

−∞
u(x, t)dx

whose solution is
v(t) = v0e

t.

(d) Consider (B1) and (B2) again with b(x, t, u) = −u+ x. Compute exact solution and
verify that it satisfies (B1) and (B2).
Hint: The solution of an ODE of the form

(∗) dv

dt
+ v = b(t) is given by v(t) = e−tv0 + e−t

∫ t

0
b(s)esds.

Solution: Using the characteristic found in (a) we have

du(X(t), t)

dt
= −u(X(t), t) +X(t) = −u(X(t), t) + x0e

t

Hence, setting v(t) = u(X(t), t) we have an ODE of the form (*) whose solution gives

u(X(t), t) = u0(x0)e
−t + e−tx0

∫ t

0
e2sds

= u0(X(t)e−t)e−t + e−tX(t)e−t 1

2
[e2t − 1]

This gives the solution

u(x, t) = u0(xe
−t)e−t +

1

2
x[1− e−2t]

Check:

ut = −e−tu0 − xe−2tu′0 + xe−2t,

ux = e−2tu′0 +
1

2
(1− e−2t)

which gives

ut + xux = −e−tu0 − xe−2tu′0 + xe−2t + xe−2tu′0 +
1

2
x(1− e−2t)

= −e−tu0 +
1

2
x+

1

2
xe−2t

= −u+
1

2
x[1− e−2t] +

1

2
x+

1

2
xe−2t = −u+ x


