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Problem 1.
(a) Consider the linear transport equation

(b)

(x) w —k’?um = q(=,t), r € R=(—00,+00)

with initial data

() u(z, t = 0) = ().

Set g(x,t) = 0. Compute the solution u(z,t) by using the method of characteristics.
Verify that your solution satisfies (*) and (**).

Consider (*) with ¢(z,t) = .

- Compute the solution u(z,t) by using the method of characteristics. Verify that
your solution satisfies (*) and (**)

- What is the dominating part of the solution when ¢ = oo (the long time behavior).

Consider (*) with g(z,t) = ze™".

- Compute the solution u{x;7) by using the method of characteristics. Verify that
your solution satisfies (*) and (**)

- What is the dominating part of the solution when ¢ — oo (the long time behavior).

Now, consider (¥) with g(z,t) = 0 on the interval z € [0, 5] with initial data

2z, 0<z<05
(%) Mw‘{2u—m,05gm§1
- State the solution of this this problem in view of the solution found in (a).
- Make a sketch of the initial data and the solution u(z,t) at time ¢ = 1 in one and

the same figure.
- Show that we can obtain the following characterization of the solution u

5 5
/ u(z,t)? dz = et/ o(z)? d, 0<t<L
0 0

Hint: Multiply (*) by u and integrate over [0, 5].

Consider a discretization of the domain [0, 5] x [0, T] with discretization parameters
Az and At. Divide the domain [0, 5] into cells 1,..., M and timesteps t0 =0, t! = At,
..., t" = nAt.

- Define a stable discrete scheme for computing the solution in part (d) based on
explicit time discretization.

Q
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Problem 2.
(a) In the following we consider the following model for single-phase flow in a vertical
wellbore:

) pi + (pu)e = Gu,
*
(pu)e + (pu2)e + P(p)s = —ku—gp, = €[0,L];
where x and g are constants related to friction and gravity, = = 0 represents bottom
and z = L represents top.

- Assume that we ignore the acceleration effect represented by (pu): + (pu?)y in the
momentum equation. Show that we obtain an equation for the density p of the form

(%) pt + 1 (p)z = (A(p) P(p)a)s + Gu-
In particular, identify f(p) and d(p).

(b) Consider a grid composed of 1, ... , M cells where z; refers to the cell center with cell
interfaces z;_1/2 and &jt1/2- Write down a discrete version of (**) for the interior
domain, i.e., cells 2,...,M —1 where boundary conditions are not involved.

(c) Consider Fig. 1 where we have specified a liquid fluid rate at left end (z = 0). The
right end (at z = L) is open with atmospheric pressure p* = 1 bar. Focus on pressure
P and fluid velocity u along the wellbore.
- Explain the relation between pressure profiles and fluid velocity profiles for the 3
different cases. In particular, make use of the equation that relates u, P(p)z, and gp.

(d) We are interested in the stationary solution of (**). We assume a weakly compressible
liquid with a linear pressure law

P(p) = af(p— ") + 1",
where g; represents sound velocity, and p° is the density corresponding to pressure .
- How will the sound velocity a; affect the convergence towards the stationary solution

(e) The stationary solution of (**) when gy = 0 satisfies the following ODE

(% %) [(p) = d(p)P(p)s = qr(t),  Pla=r=¢",
where g (t) is the rate at = 0 and P(p*) = p* is the pressure at z = L and

g 2 1
f(p) P ()= —p
Show that that

o+ b(p* 2 eQb(L—-m) —a
pz) = \ﬁ 7") ]b . a=rq/d}, b=g/d,

(a, b, p* are constants relative space variable z) is a solution of (xxx).
Hint: Show first that

1
pa = ~;[a +b(p")?))e .
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a + b{p* 2 eZb(L—ac) —a
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Exam PartB -

Solving Nonlinear Equations & Modelling of Well Flow

There are 11 questions in total. Some formulas, equations and Matlab codes are found in
Appendixes. This part constitutes 50 % of exam.

Exercise 3 — Matlab Questions

a)

b)

Explain what is the difference between a script file and a function file in Matlab and explain how
information is transferred between the files.

In the course, we have learned about three types of control statements in Matlab. Explain how
these works.

The program given in Appendix B has been written for solving the nonlinear equation

f(x)= x2 — 4x + 2 using the bisection method. Explain how you would change this program in

order to find the root of the function f(x)= x® +x? —=3x -3 intheinterval [1,2]

Exercise 4 — Solving Nonlinear Equations

a)

We are given the function f(x)= e* —3x . Show how the bisection method works by filling out

the following table.

Iteration

x1

x2

x3

f(x1)

f(x2)

f(x3)

1

1

1,5

-0,28172

1,38906

-0,01831

2
3
4

In the following, we will consider a horizontal closed pipe. The pipe has an inner diameter of 0.2
meter. The length of the pipe is 5 meters. The pipe contains 141.92 kg with water and 1.57 kg of
gas. We want to find the pressure inside this pipe. How can we proceed to solve this problem ?
(Hint: Formulas for gas and liquid densities can be found in Appendix D)

Consider the following equation: f'(x) = +2 —2x —3. This has roots x,=-1 and x,=3. Use the

iterative method to show how we can find one of these roots. Use xo=4 as a starting point




Exercise 5 — Well pressures
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a) We are at 3500 meters. We are circulating the well with 2000 lpm (liters per minute). The
Equivalent circulating density ECD is 1.67 sg. During a connection, we saw that the pressure drop
in annulus was 25 bars. Find out what the static mudweight is!

b) What is the pump pressure reflecting and what will happen with the pump pressure when the rig

pump is turned off ?

c) We take a kick of 4 m?®. The kick has a pressure of 515 bar at bottom. If we let this kick migrate in
a closed well of depth 3500 meters, what will the final bottomhole pressure theoretically
become? (assume mudweight of 1.5 sg and that temperature effects can be neglected)

Exercise 6 — Conservation Laws

a) What are the three fundamental conservation laws and why is there a need for closure laws

b) What kind of mathematical model is the drift flux model and what role does the eigenvalues of
the system have (what do they express) ?



Appendix A - Some Units & Formulas
1inch=2.54 cm = 0.0254 m

1 feet = 0.3048 m

1 bar = 100000 Pa

1sg=1kg/l (sg- specific gravity)

M=Q:p M massrate (kg/s), Q Volumerate (m%/s), p density (kg/m’)
O=v-4 Q Volumerate (m?/s), v velocity m/s. A area m’
p=p-h-0.0981 p(bar), pdensity(sg),h —vertical depth (m)

f'_li =C , from Ideal gas law

P-V =C ,Boyles law (temperature is assumed constant)



Appendix B

Main.m

Main program that calls up a routine that uses the bisection

method to find a solution to the problem fi{x) = 0.

The search intervall [a,b] is specified in the main program.

The main program calls upon the function bisection which again calls upon
the function func.

¢ o¢ @ o°

o\®

if error = 1, the gearch intervall has to be adjusted to ensure
f(a) x £(b)<0

@

¢

Specify search intervall, a and b will be sent into the function
bisection

a = 4.0;

b = 5.0;

¢

o0

s call upon function bisection which returns the results in the variables
s solution and error.
[solution,error] = bisection(a,b) ;

solution % Write to screen.
error % Write to screen.

Bisection.m

function [solution,error] - bisection(a,b)

o\°

The numerical solver implemented here for solving the equation fi{x)= 0
ig called Method of Halving the Interval (Bisection Method)

@

> vou will not find exact match for f(x)= 0. Maybe f(x) = 0.0001 in the
end.

% By using ftol we say that if abs(f(x))<ftol, we are satisfied. We can

% also end the iteration if the search interval [a,b) is satisfactory
small.

s These tolerance values will have to be changed depending on the problem
% to be solved.

\O

ftol = 0.01;

s Set number of iterations to zero. This number will tell how many
% iterations are required to find a solution with the specified accuracy.

noit = 0;

xl = aj;
x2 = b;



f1 func (x1) ;
f2 = func(x2);

First include a check on whether fixf2<0. If not you must adjust your
initial search intervall. If error is 1 and xolutlov is set to zero,
then you must adjust the search intervall [a

0@ o°

o°

if (f1*f2)>=0
error = 1;
solution = 0;

1

J‘

se

start iterating, we are now on the track.
x3 = (x1+x2)/2.0;

f3 = func(x3);

o (D

while (f3>ftol | £3 < -ftol)
noit = noit +1 ;

if (£3*fl) < 0O

X2 = X3;
else

X1 = X3§
end

x3 = (x1+x2)/2.0;

f3 = func(x3);

fl = func( )l
end

error = 0;
solution = x3;

noit % This statement without ; writes out the number of iterations to
the screen.
end
func.m
function £ = func(x)

f = x*2-4%x+2;



Appendix C

% Prograw where the Larsen Cuttings Transport Model is implemented
% TFirst specify all input parameters:

do = 8.5; % Outerdiameter (in) ( 1 in = 0.0254 m)
% Innerdiameter (in)

di = Bj

rop = 33 % Rate of Penetration - ROP ft/hr (1 ft = 0.3048m)

pv = 15 % Plastic viscosity (cP)

yp = 16 % vield point (1bf/100ft2)

deutt = 0.1 % Cuttings diameter (in) (1 inch = 0.0254 m)

mw = 10.833 % Mudweight (ppg - pounds per gallon) 1 ppg = 119.83 kg/m3.
rpm = 80 % rounds per minute

cdens = 19 % cuttings density (ppg - pounds per gallon)
angstart = 50 % Angle with the vertical

veut - Cuttings Transport Velocity (CTF in Larsens paper)

Verik Critical Transport fluid velocity (CTFV) in Larsens paper. This
is the minimum fluid velocity required to maintain a continously upward
movement of the cuttings.

velip - Equivalent slip velocity (ESV) defined as the velocity difference
between the cuttings and the drilling fluid

verit = veut+vslip

All velocities are in ft/s.

ua - apparent viscosity

o° o A% o? o° o o oP

o\°

It should be noted that the problem is nested. Vcrit depends on vslip
which again depends on an updated/correct value for verit. An iterative
approch on the form x(n+l) = g(x(n)) will be used.

o® o

o\®

for 1 = 1:8

ang (i) =angstart+i*5
veut = 1/((1-(di/do)”2)*(0.64+18.16/rop));

vslipguess = 3;
verit = veut + vslipguess;

¢ Find the apparent viscosity (which depends on the "guess" for verit)
ua = pv+ (5*yp*(do-di))/verit

% Find vslip based on the "guessed apparent viscosity". This needs to be
% updated until a stable value is obtained. "Iterative approach".

if (ua <= 53)

veglip = 0.0051*ua+3.006;

else
vslip
end

0.02554* (ua-53)+3.28;

]

compared and updated in a
) and vslip (n) do not

$Now we have two estimates for vslip that can be ¢
+1)
1 is found.

% while loop. The loop will end when the vsl n

$ change much anymore. I.e the iterative solution

=1 :

while (abs(vslip-vslipguess))>0.01

vslipguess = vslip;

verit = veut + vslipguess;

% Find the apparent *wiscosity (which depends on the "guess" for vcrit)
ua = pv+ (5*yp*(do-di))/verit;

o=
|8
&

o]



o

% updated until a stable value is obtained. nIterative approach”.

if (ua <= 53)

vslip = 0.0051%ua+3.006;

else

vslip = 0.02554*(ua-53)+3.28;
end

n=n+1;

vslip % Take away and you will se how vslip converges to a solut

end % End while loop

o\

s cuttings size correction factor: cz = _1.05D50cut+1.286
Cz = —1.05*dcutt+1.286
s mud Weight correction factor (Buoancy effect)

if (mw>8.7)

CMW = 1—0.0333*(mw-8.7)

else

cMW = 1.0

end
% Angle correction factor
CANG = 0.0342*ang(i)-o.000233*ang(i)‘2—o.213
vslip = vslip*CZ*CMW*CANG; % Include correction factors.
% Find final minimum velocity required for cuttings transport
verit = veut + vslip

veritms = verit*0.3048 % velocity in m/e

Q0 = 3.14/4*((8.5*0.0254)*2—(5*0.0254)‘2)*vcritms s (m3/s)
Q = Q*60%1000 % (1lpm)

yrate(i):Q
end

plot(ang,yrate)

Find vslip paged on the nguessed apparent viscosity". This needs to be

ion



Appendix D - Steady State Model for Two Phase Flow

Conservation of liquid ma
0

—(Apov) = 0

0z

Conservation of gas mass

0
—(Ap, V) = 0

SS

Conservation of momentum.

9 p=~pm - s
0z ™ Az

Gas slippage model (simple):

W, = Kv,. t+ S (k=1.2,5= 0.55)

Liquid density model (simple)

o= g+ EE2,
a,

assume water: p;, = 1000 kg/m*, Po = 100000Pa, a, =1500 m/s

Gas density model (simple)

p,(p) =fz—,ideal gas: d, =316 m/s.

g

Friction model

The friction model presented here is for a Newtonian fluids like water. The gen

frictional pressure loss gra

dient term is given by:

A ic 2 : .ab 2
D _lﬂm‘wﬂl (Pa/m)

e

AZ (dout - din)
A-(m%)
p,- phase densities (kg/m

v, - phase velocities (m/s)

p - pressure (Pa)

%), liquid —> i=l, gas ->i=§

g —gravity constant 9.81 m/s’

eral expression for the



a, - phase volume fractions taking values between 0 and 1. &; +ta, = 1.

P = C1P1 T FgPs” mixture density

v =ov TV, T mixture velocity

mix




