
Problem 1.

(a) Key calculations are:
ut + f ′(u)ux = 0

has characteristics given by

dX(t)

dt
= f ′(u(X(t), t)), X(t = 0) = x0, (∗)

Hence,
d

dt
u(X(t), t) = ux

dX

dt
+ ut

dt

dt
= uxf

′(u) + ut = 0

which implies that

u(X(t), t) = u(x0, t = 0) = φ(x0) (∗∗).
We must find and expression for x0. From (*) we get

dX(t)

dt
= f ′(u(X(t), t)) = f ′(φ(x0)), X(t) = f ′(φ(x0))t+ x0

Inserting in (**) we get

u(X(t), t) = φ
(
X(t)− f ′(φ(x0))t

)

(b) We compute

ux = φ′(x0)
∂

∂x

(
x− f ′(u)t

)
= φ′(x0)(1− f ′′(u)uxt) = φ′(x0)(1− f ′′(φ(x0))uxt) (b1)

From this we find the following expression for ux:

ux(1 + f ′′(φ(x0))φ
′(x0)t) = φ′(x0)

or

ux =
φ′(x0)

1 + f ′′(φ(x0))φ′(x0)t
,

which blows up if
1 + f ′′(φ(x0))φ

′(x0)t = 0

Since f ′′ > 0 this can only happen for some time t > 0 if φ′(x0) > 0.
We find

ut = φ′(x0)
∂

∂t

(
x− f ′(u)t

)
= −φ′(x0)

(
f ′′(u)utt+ f ′(u)

)
(b2)

From (b1) and (b2) we get

ut + f ′(u)ux = −φ′(x0)
(
f ′′(u)utt+ f ′(u)

)
+ f ′(u)φ′(x0)(1− f ′′(φ(x0))uxt)

= −φ′(x0)f
′′(u)utt− f ′(u)φ′(x0)f

′′(φ(x0))uxt

= −φ′(x0)f
′′(φ(x0))t[ut + f ′(u)ux]

Hence,
[ut + f ′(u)ux](1 + φ′(x0)f

′′(φ(x0))t) = 0.

Condition is then
1 + φ′(x0)f

′′(φ(x0))t ̸= 0
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(c) We refer to the note for the integral equality.
Motivation:
In the weak formulation derivatives have been over to the test function. Hence, we
can include solutions that might contain discontinuities

(d) Consider (*) with f(u) = 1
4u

2 and

φ(x) =

{
4, 0 ≤ x < 1;
0, otherwise

RP-1 at x = 0:

vt+f(v)x = 0, f(v) =
1

4
v2, f ′(v) =

1

2
v (i.e., (f ′)−1(v) = 2v), v0(x) =

{
0, x < 0;
4, x ≥ 0;

Since we have in increasing jump, we cannot have a shock solution. We look for a
rarefaction wave solution of the general form:

v(x/t) =

⎧
⎨

⎩

vl, x/t ≤ f ′(vl);
(f ′)−1(x/t), f ′(vl) < x/t < f ′(vr);
vr, f ′(vr) ≤ x/t.

Plugging in the values of vl = 0, vr = 4 we get

(1) v(x/t) =

⎧
⎨

⎩

0, x/t ≤ 0;
2(x/t), 0 < x/t < 2;
4, 2 ≤ x/t.

RP-2 at x = 1: At x = 1 we have the following problem:

wt + f(w)x = 0, f(w) =
1

4
w2, f ′(w) =

1

2
w, w0(x) =

{
4, x < 1;
0, x ≥ 1;

This jump is decreasing, hence we can obtain an entropy satisfying solution by con-
structing a shock solution. The RH condition gives the speed

s =
f(wl)− f(wr)

wl − wr
=

1/4 · 42 − 1/4 · 02

4− 0
= 1.

Clearly, the entropy condition is then satisfied since

f ′(wl) = 2 > s = 1 > 0 = f ′(wr).

Hence, the correct solution of this local Riemann problem is given by

w(x, t) =

{
wl, if x− 1 ≤ st;
wr, if x− 1 > st.

That is,

(2) w(x, t) =

{
4, if x− 1 ≤ t;
0, if x− 1 > t.

Consequently, there is a left rarefaction wave and a right shock as described by the
full solution

(3) u(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ≤ 0;
2(x/t), 0 < x < 2t;
4, 2t ≤ x ≤ t+ 1
0, x > t+ 1.
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Figure 1. Left: Solution at time T = 1. Right: Solution at time T = 1.5.

At some time T c the rarefaction wave catches up to the shock, this time is given as

2T c = T c + 1, ⇒ T c = 1.

The solution (3) is valid for t ∈ [0, T c].

(e) We want to calculate the new shock (ul(t), 0) and its position xs(t) for times t > T c.
Firstly, the R-H condition gives the shock speed

(4) s(t) =
f(0)− f(ul(t))

0− ul(t)
=

1

4
ul(t).

Secondly, the characteristic associated with ul(t) is given by

(5) xs(t) = f ′(ul(t))t.

How can we link these two relations?
The shock must be characterized by the fact that its speed s(t) is equal to the speed
of ul(t) along its characteristic xs(t). Thus,

s(t) =
d

dt
xs(t).

Combining this relation with (4) and (5) gives that

1

4
ul(t) =

d

dt
[f ′(ul(t))t] = f ′′(ul(t))u

′
l(t)t+ f ′(ul(t)) =

1

2
u′l(t)t+

1

2
ul(t).

That is

−1

2
ul(t) =

dul
dt

t,

or

−1

2

1

t
dt =

1

ul
dul.

Integrating over [T c, t] and [4, ul(t)] gives

−1

2

∫ t

T c

1

t
dt =

∫ ul

4

1

ul
dul, t ≥ T c,
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or

−1

2
ln(t)

∣∣∣
t

T c
= ln(ul)

∣∣∣
ul

4
,

which implies

ln
(T c

t

)1/2
= ln

(ul
4

)
.

From this we get

(6) ul(t) = 4
(T c

t

)1/2
=

4

t1/2
, t ≥ T c = 1.

The corresponding position xs(t) is given by

(7) xs(t) =
1

2
ul(t)t = 2

√
t, t ≥ T c = 1.

The resulting solution for t ≥ T c = 1 is then given by

(8) u(x, t) =

⎧
⎨

⎩

0, x ≤ 0;
2(x/t), 0 < x < xs(t);
0, x ≥ xs(t).

A plot of the exact solution compared with numerical solution is shown in Fig. 1 at
time T = 1.0 and T = 1.5 based on (3) and (8).

Problem 2.

(a) We refer to text note for details.

uT = uw|x=0 + uo|x=0 =
Q

A
+ 0 =

Q

A
.

(b)

F (S) = f(S)
[
1− λog sin(α)

ρw − ρo
uT

]

(c) We find

S∗ ≈ 0.6 ⇒ V = f(S∗)/S∗ ≈ 0.88/0.6 = 1.46 ⇒ x∗ ≈ V T = 0.73

Moreover,

S = 0.7 : f ′(0.7) ≈ 0.5 ⇒ xS = f ′(S)T = 0.5 ∗ 0.5 = 0.25

S = 0.8 : f ′(0.8) ≈ 0.15 ⇒ xS = f ′(S)T = 0.15 ∗ 0.5 ≈ 0.07

See Fig. 2 for a plot of solution.

(d) Mass conservation:
AI = AII ,

where

AI =

∫ 1

0
f ′(S)TdS, AII = x∗S∗ +

∫ 1

S∗
f ′(S)TdS = f ′(S∗)TS∗ + T (f(1)− f(S∗))

This gives the relation

f ′(S∗) =
f(S∗)

S∗
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Figure 2. Solution of BL
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Figure 3. Horizontal

(e) See Fig. 3, 4, and 5 for a comparison of the three different cases.
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Figure 4. Upward dip
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Figure 5. Downward dip


