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Suggested solution to the final exam in Welltest Analysis, May 18, 2009 
 
Problem 1 
 
a) Two flow regimes appear to be evident in the data, with early data dominated by wellbore 
storage and late data exhibiting a simple radial flow response. A key parameter for the first 
period is the storage constant C, and for the radial flow period the flow capacity kh. If we use 
the shut-in pressure (from Table 1) and the first point from Table 2 we get the storage 
constant   
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To determine kh by a similar approach we can assume that the last part of the data represents 
radial flow with derivative value / ln log / ln / ln10 / 2.3026d p d t m d t d t m m∆ ∆ = ∆ ∆ = = . 
From Fig. 1 it follows that points near 8 hrs can be picked to determine the slope 
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and hence 
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Note that we do not need to use equivalent time due to the long producing time. 
 
b) We can use the same data points chosen above, i.e., at the shut-in times 6.3715 and 
10.0982 hrs. With the producing time 300 24 7200⋅ =  hrs prior to shut-in we then get   
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psi/log-cycle. The pressure hrp1  at 1t∆ =  hr can be determined by extrapolation from the 

pressure 5949.5wsp =  psi at 10.0982t∆ =  hrs as follows:  

 

[ ] [ ]{ }1 5949.5 log1/(7200 1) log 10.0982 /(7200 10.0982)hrp m= + + − +   

 
        5949.5 43.047( 3.8574 2.8537) 5949.5 43.2 5906.3= + − + = − =  psi.  
 
From the slope above we also get 
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The skin value can be determined from the formula  
 

1 ,

2
1.151 log log 3.23

1
hr wf s

t w

p p t k
S

m t c rφµ
− 

= − − + + 
  

 

5 2

5906.3 5466.3 7200 251.8
1.151 log log 3.23

43.047 7200 1 (0.19)(0.84)(2.14 10 )(0.354)−

 −= − − + + × 
 

 
1.151(10.2214 0.00006 8.7696 3.23) 5.39= + − + = . 

 
The added pressure drop at the wellbore can now also be computed as   
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The extrapolated pressure p* at infinite shut-in can be obtained by extrapolating from the 
pressure at 10.0982 hrs with the result 
 

[ ]{ }* 5949.5 log1 log 10.0982 /(7200 10.0982)p m= + − +   

 
        5949.5 43.047(0 2.8537) 5949.5 122.8 6072.3= + + = + =  psi.  
 
 
c) The extrapolated pressure p* can only be used to estimate the (current) average pressure if 
the flow behavior is still in or close to infinite acting at shut-in. This in turn would imply that 
the external radius has to be similar to or larger than the radius of investigation at shut-in,  in 
other words 
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This is not impossible, but probably not likely. 
All standard techniques involving depletion at shut-in require knowledge of the drainage area 
to estimate the average pressure at shut-in.  
 
 
d) The Horner straight line can be extrapolated directly to the average pressure if 
pseudosteady state is reached prior to shut-in, which is clearly the case here since the radius of 
investigation at shut-in is more than 4 times the assumed external radius. We can therefore 
read off the average pressure directly based on the identity 
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in other words when 
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We can therefore again extrapolate from the pressure at 10.0982 hrs to obtain the result  
 

[ ]{ }5949.5 log1/83.905 log 10.0982 /(7200 10.0982)p m= + − +   

 
        5949.5 43.047( 1.9238 2.8537) 5949.5 40.0 5989.5= + − + = + =  psi.  
 
Note: The permeability k was missing in the formula listed for the analysis above! 
 
From the identity 
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we can determine the initial pressure through the computations
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e) The radius of investigation at the end of the buildup is 
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A boundary closer than this should be seen in the data. 
 
 
f) The storage constant can be determined from the slope of a line through the early data. 
Consistency of the data can be determined by extrapolating this line to 0t∆ =  hrs and 
compare with the shut-in pressure , 5466.3wf sp =  psi.  If we now use the first two points from 

Table 2 we get the slope 
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and hence the storage constant   
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The corresponding dimensionless wellbore storage then takes the value 
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If we extrapolate the straight line from the first point to 0t∆ =  we get 
 

0 5470.5 5470.5 (4100)(0.001) 5470.5 4.1 5466.4p m t′= − ∆ = − = − =  psi, 

 
which is very close to the shut-in pressure in view of the accuracy of the data (one decimal 
place reported).  
 
 
 
 
 
 
 
 
Problem 2 
 
a) We can at the most expect to see periods dominated by wellbore storage (unit slope) , 
radial flow, linear flow (half slope), radial flow, and pseudosteady-state flow (unit slope). 
 
b) The following generated data represents a possible outcome for a very long flow period at 
constant rate: 
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c) The following generated data represents a possible outcome for a very long shut-in period 
following a very long producing period: 
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Radial flow
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prior to boundary effects  

 
 
 
 
Problem 3 
a) The pressures are less than 2000 psia, so we should use a p2 formulation. Since we only 
have stabilized data, we can use the first and last points to determine the values  
 

2 2 21881 1797
24716.2

12.5

p

q

∆ −= =   and  
2 2 21881 1639

37526.0
22.7

p

q

∆ −= = .  

 
From these we get the slope   
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From the first we can also determine the value   
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The deliverability of the well will therefore be given by the identity  
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Furthermore we get   
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b) The same points give us   
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From these points we get the slope   
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and hence the exponent 0.588n =  for the back-pressure equation 2 2( )n

wfq C p p= − . Using the 

first point we next get 
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