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Suggested solution to the re-sit exam in Welltest Analysis, Feb. 11, 2011 
 

Problem 1 

 

a) Early data (from the buildup) are dominated by (formation) linear flow to the fracture, and 

late data (from the drawdown) are approaching radial flow. 

 

b) The end of the data is best suited for semilog analysis. We can therefore, for instance, use 

the point 1238.61wfp   psia at 114.128t   hrs and 1185.25wfp   psia at 120t   hrs to 

determine the semilog slope   
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and next the flow capacity 
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and the permeability 
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h
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The pressure hrp1  at 1t   hr can be determined by extrapolation from the pressure 

1238.61wfp   psia at 114.128t   hrs as follows:  

 

1 1238.61 (log1 log114.128) 1238.61 ( log114.128)hrp m m        

 

        1238.61 2448.94( 2.05739) 1238.61 5038.43 6277.04       psia.  

 

From the initial pressure 5000ip   psia we then get the skin value  
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1.151( 0.5215 6.8958 3.2275) 1.151( 4.1898) 4.82        . 

 

The added pressure drop at the wellbore can next be computed as   

 

2448.94
( 4.82) 10264

1.151 1.151
S

m
p S       psi.  
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c) With linear flow from the start of the buildup we can for instance pick the first two points 

from Table 3 to determine the slope 

 

1219.2 1207.49
491.882
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
 psi/ hr . 

 

From this slope we get the fracture half-length 
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Since the theoretical skin value for a fracture with uniform flux will be 

 

(2.718)(0.354)
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and the corresponding skin value for a fracture with infinite conductivity will be 
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x
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it follows that a uniform-flux fracture is most likely. 

 

 

d)  Since the actual drawdown after 120 hrs was  

 

(120) 5000 1185.25 3814.75i wfp p      psi 

 

with skin value -4.82, and would have been  

 

0 3814.75 3814.75 ( 10264) 14078.75S Sp p         psi 

 

with 0 skin, we would get 

 

0, 2600 0 / 2 14078.75 / 2 7039.375S q Sp p         psi 

 

with rate 2600 STB/D. Using a theoretical skin value with double fracture length, we get 

 

(2.718)(0.354)
ln ln 5.55

247.1

w

f

er
S

x
    . 

 

With rate reduced by one half the semilog slope will also be reduced by one half, and hence 

yield the “skin effect”  
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2448.94 / 2
( 5.55) 5904.265

1.151 1.151
S

m
p S       psi.  

 

We can now estimate the new drawdown after 120 hrs to be 

 

, (120) 7039.375 5904.265 1135.11i wf newp p      psi, 

 

and hence the pressure after 120 hrs to be 3864.89 psia. 

 

 

 

e) The outer  radius re of a 120 acres circular drainage area will be given by  

 

(120)(43560)
1290er


  ft.

 
 

If we set the outer radius equal to the radius of investigation we get 
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we get  

 
2 51290 (0.23)(3.8)(2.8 10 )
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t
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hrs. 

 

The drawdown at the current rate would be  

 

2789.5
(2789.5) 3814.75 log 3814.75 (2448.94)(1.36635) 7160.86

120
i wfp p m        psi 

 

after 2789.5 hrs. The new rate should therefore be 

 

2000
5200 1452

7160.86
newq     STB/D. 
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Problem 2 

 

a) Higher mobility of water implies that water (the injected phase) will move easier towards 

the midpoint, and hence cause the pressure to increase at the midpoint. 

 

b) Higher compressibility to oil implies that more oil can be withdrawn locally from the 

producer than water injected locally at the injector. The water must therefore move faster 

towards the midpoint, and hence cause the pressure to rise. 

 

 
 

Problem 3 

 

a) Since the pressures are low we need to use a pressures-squared formulation. Therefore, if 

we use the first and the last transient points we get  

 

 
2 2 21903 1818.9 313011.8

20.867
15000 15000

p

q

 
   .  

 

and 

 
2 2 21903 1660.8 863152.4

31.675
27250 27250

p

q

 
      

 

From these we get the slope   

 

31.675 20.867
0.000882

27250 15000
b


 


.  

 

From the stable flow point 

 
2 2 21903 1633.2 954066.8

41.409
23040 23040

p

q

 
      

 

we can next determine   

 

41.409 (0.000882)(23040) 21.088a    . 

 

The deliverability of the well will therefore be given by the identity  

 
2 2 2 221.088 0.000882wfp p aq bq q q     .  

 

We furthermore get flow potential  

 

2 21
AOF 21.088 21.088 (4)(0.000882)(1903 ) 53228

(2)(0.000882)
     
 

 Mscf/d. 
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b) The points above can re-used here, i.e., we can use the transient values   

 

 
2 2 2

1 1903 1818.9 313011.8p       

 

and  

 

 2 2 2

2 1903 1660.8 863152.4p     

 

 

to determine the slope   

 
2 2

2 1

2 1

log log1 log(863152.4) log(313011.8)
1.699

log log log(27250) log(15000)

p p

n q q

   
  

 
,  

 

and hence the exponent 0.5886n   for the back-pressure equation 2 2( )n

wfq C p p  . Using 

the stable point we next get 

 
2 2 0.588623040 (1903 1633.2 ) (3308.1)C C   , and therefore 6.965C   with   

 
2 2 0.5886( ) (6.965)(1903 ) 50522nAOF C p    Mscf/d. 

 


