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Suggested solution to the final exam in Well-Test Analysis, Dec. 9, 2013 
 

Problem 1 

 

a) Two flow regimes are directly evident in the data: 1) Early linear flow, from the beginning 

to about 0.06 hrs, and (2) hemi-radial flow from about 3 hrs to the end of the data. The last 

part must be hemi radial because a boundary effect is starting to show during the period with 

linear flow.  

 

 

b) With hemi-radial flow after 3 hrs we can for instance use the data points 6213.4wfp   

psia at 10.169t   hrs and 6192.5wfp   psia at 24t   hrs to determine the double semi-log 

slope    
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and hence the actual semi-log slope 
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From this slope we get 
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c) With linear flow ending around 0.06 hrs we can for instance use the points 6298.5wfp   

psia at 0.003t   hrs  and 6294.7wfp   psia at 0.034t   hrs, to determine the slope  
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of the linear-flow data.  Since we must also have 
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it follows that we must have 
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6298.5 (29.32)(0.054772) 6300.1ip     psia.  

 

Moreover, from the slope and permeability obtained above we get the fracture half-length 
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d) Deviation from simple linear flow is indicated at a time of 0.06 hrs. Based on the radius of 

investigation at this time, 
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we can estimate the distance to the nearest boundary to be 79 ft.  The radius of investigation at 

the end of the data will be 
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e) We can determine Dxft  at the end of simple linear-flow data at 0.06t   hrs and compare 

that we the bounds for linear-flow behavior. This corresponds to 
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which is beyond the end of linear-flow data for a fracture with infinite conductivity. The 

fracture must therefore have uniform flux. 
 

 

 

 

Problem 2 

 

a) The required equation can be derived from the basic skin equation 
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which can be rewritten in the form 
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and also in the general form 
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From the listed properties we get the semi-log slope 
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We therefore get the pressure 
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b) The skin value for a fracture with infinite conductivity will be given by  
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The computation above can be repeated with the new skin value, or final value modified with 

the difference in skin effect, which will be 
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The bottom-hole pressure after 300 hours with the new skin value will therefore be 

 

(300) 138.54 318.13 456.67wfp     bar. 

 

 

 
 

Problem 3 

 

a) Since the pressures are high we should use a direct pressure formulation. Therefore, if we 

use the first and the last points we get  
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From these we get the slope   
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From the first point we can next determine   
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The deliverability of the well will therefore be given by the identity  
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We furthermore get the open flow potential  
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        99140  Mscf/d. 

 

 

 

b) The points above can be re-used here, with  (can also use p
2
 formulation) 
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and  
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to determine the slope   
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and hence the exponent 0.5657n   for the back-pressure equation ( )n

wfq C p p  . Using 

the first point we next get 
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