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Suggested solution to the re-sit exam in Well-Test Analysis, Feb. 26, 2016 
 

Problem 1 

 

a) Four flow regimes are evident in the data: (1) Linear flow towards the fracture in early 

data, from the beginning to about 0.1 hrs, (2) radial flow in the range 1-10 hrs, (3) linear flow 

between parallel boundaries in the range 30-150 hrs, and (4) pseudosteady-state flow (simple 

depletion) from about 200 hrs to the end.  

 

b) Since we have radial-flow data between 1 and 10 hrs, we can use 4764.798wfp   psia at 

1.2743t   hrs and 4713.967wfp   psia at 8.0403t   hrs to determine the semi-log slope 

(absolute value)   

 

4713.967 4764.798 50.83
63.539

log(8.0403) log(1.2743) 0.8
m


  


 psi/log-cycle. 

 

From the slope we next get 
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and therefore 

 

18955.4
403.3

47

kh
k

h
    md. 

 

The pressure at 1 hour can be determined by extrapolation from either of the two points used 

to determine the slope m, for instance in the form 

 

   1 4713.967 log1 log(8.0403) 4713.967 63.539 log(8.0403)hrp m       

 

        4713.967 63.539(0.90527) 4713.967 57.52 4771.487      psi,  

 

where the fact that the actual slope is negative has been used. 

 

The skin value can next be determined from the formula  
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1.151(1.23567 8.89671 3.23) 5.10     . 

 

The “added pressure drop” at the wellbore can now also be computed as   
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63.539
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S

m
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c) It appears that two boundaries are starting to show after about 15 hrs. The radius of 

investigation at time is given by 
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This can be used as estimated distance to the first two boundaries (both).  

 

With the same approach we can assume the onset of effects from the last boundaries to 

happen at 200 hours (after the end of the second period with linear flow), and use this to 

estimate the distance to the last two boundaries (both) by the value 
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d) Since we have linear-flow data until about 0.1 hr, we can for instance use the points 

4845.757wfp   psia at 0.002t   hrs and 4836.581wfp   psia at 0.0202t   hrs to determine 

the slope (absolute value)   

 

4836.581 4845.757 9.176
94.21psi/ hr

0.09740.0202 0.002
m


   


. 

 

From this slope we can determine the fracture half-length from the identity 
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If the fracture has uniform flux, then the corresponding skin should be 

 

(0.354)
ln ln 4.906

130

w

f

er e
S

x
    , 

 

while it should be 

 

2 (2)(0.354)
ln ln 5.213

130

w

f

r
S

x
     

 

for an infinite-conductivity fracture. The last value is closest to the value 5.1S   from (b), so 

this suggests that the fracture has infinite conductivity.  
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e) This corresponds to the second period with linear flow in the range 30 – 150 hrs, where 

the same linear-flow analysis as used above will give us the half-width of the flow unit. For 

this analysis we can use the points 4641.778wfp   psia at 60.809t   hrs and 

4602.667wfp   psia at 114.809t   hrs to determine the slope (absolute value)   

 

4602.667 4641.778 39.111
13.408 psi/ hr

2.9169114.809 60.809
m


   


. 

 

From this slope we can determine the fracture half-width from the identity 
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and hence the width W = 1826 ft. 

 

 

f) We can use data after 200 hrs in a reservoir-limit analysis. For instance, if we use the 

points 4420.249wfp   psia at 521.609t   hrs and 4340.541wfp   psia at 720t   hrs , then 

we get the slope (absolute value)   

 

4340.541 4420.249 79.708
0.402 psi/hr

720 521.609 198.391
m


   


. 

 

From the slope we can determine the drainage area from the identity   
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In order to determine CA we need to use the identity  
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where p0 is the extrapolated pressure to t = 0. We can determine p0 by extrapolating from the 

last point, for instance by setting 

 

0 0 04340.541 (720) ( ) (0.402)(720) 289.44wf wfp p t p m t p p        psia, 

 

and hence get 0 4629.981p 

 

psia. To proceed from here we can rewrite the equation above in 

the form 
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or in the form 
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If we use the last identity, then we get
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and finally 5.155AC  .  

 

 

 

Problem 2 

 

a) The skin S must first be determined as   
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The drawdown will therefore be given by 
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b) The skin value changes to 0, so we then get with reduced area and reduced rate: 
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2
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 
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Problem 3 

 

a) Since the pressures are high we should use a direct pressure formulation. Therefore, if we 

use the first and last points we get  

 

 
8655 8392

0.03169
8300

p

q

 
   

 

and 

 

8655 7320
0.06068

22000

p

q

 
  . 

 

From these we get the slope   

 

0.06068 0.03169
2.1164E 6

22000 8300
b


  


.  

 

From the last point (for instance) we get 

 

0.06068 (2.1164E 6)(22000) 0.01412
p

a bq
q


      . 

 

The deliverability of the well will therefore be given by the identity  

 
2 20.01412 (2.1164E 6)wfp p aq bq q q      .  

 

We furthermore get the open flow potential  

 

21
AOF 0.01412 0.01412 (4)(2.1164E 6)(8655)

(2)(2.1164E 6)
     
 

 

 

        60700  Mscf/d. 

 

 

 

b) If we use the same points as above, then we get   

 

8655 8392 263p     psi 

 

and  

 

 8655 7320 1335p     psi 

 

to determine the slope   
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1 log(1335) log(263)
1.6666

log(22000) log(8300)n


 


,  

 

and hence the exponent 0.6n   for the back-pressure equation ( )n

wfq C p p  . Using the 

last point we next get 

 
0.622000 (8655 7320) (75.039)C C   , and therefore 293.2C   with   

 
0.6( ) (293.2)(8655) 67534nAOF C p    Mscf/d. 

 

 

Note: If we use the expression 2 2( )n

wfq C p p   to carry out the same analysis, then we get 

 
2 2 28655 8392 4483361p     psi 

 

and  

 

 2 2 28655 7320 21326625p     psi 

 

to determine the slope   

 

1 log(21326625) log(4483361)
1.5999

log(22000) log(8300)n


 


,  

 

and hence the exponent 0.625n  . From the last point we next get 

 
2 2 0.62522000 (8655 7320 ) (38069)C C   , and therefore 0.5779C   with   

 
2 2 0.625( ) (0.5779)(8655 ) 48243nAOF C p    Mscf/d. 

 

This value is much lower than the others, clearly because the pressures are too high for this 

approach. 


