PET565 PART B: EXERCISE SET 1

Important notes

- In all reaction calculations concentrations should enter with numerical magnitude of the unit molality M: $M = mol / kg w$.
- For simplicity we will assume $1L = 1L$ brine $= 1L$ water $= 1kg$ water.
- The units of activity, activity coefficients and ionic strength are dimensionless.

1. Exercises

1.1. 0.04 mol NaCl, 0.03 mol Na₂SO₄ and 0.02 mol CaCl₂·2H₂O are mixed into 1 L water. Find the concentration C of the ions Na⁺, Cl⁻, SO₄²⁺ and Ca²⁺.

Answer. The species dissolve from solid state into aqueous species as:

$$
NaCl(s) \rightarrow Na^{+} + Cl^{-}
$$
 (1)

$$
\mathrm{Na}_2\mathrm{SO}_4(s) \rightarrow 2\mathrm{Na}^+ + \mathrm{SO}_4^{2-} \tag{2}
$$

$$
\text{CaCl}_2 \cdot 2\text{H}_2\text{O}(s) \rightarrow \text{Ca}^{2+} + 2\text{Cl}^- + 2\text{H}_2\text{O} \tag{3}
$$

The concentrations are then given by

$$
C_{\text{Na}^+} = (1 \# \text{mol NaCl} + 2 \# \text{mol Na}_2\text{SO}_4)/(1\text{L w})
$$
 (4)

$$
= 0.04 + 2 \cdot 0.03 \text{mol/L} = 0.10 \text{mol/L}
$$
 (5)

$$
C_{\text{Cl}^-} = 0.04 + 2 \cdot 0.02 \text{mol/L} = 0.08 \text{mol/L}
$$
 (6)

$$
C_{\text{SO}_4^{2-}} = 0.03 \text{mol/L} \tag{7}
$$

$$
C_{\text{Ca}^{2+}} = 0.02 \text{mol/L}
$$
 (8)

1.2. Given the composition C, calculate the ionic strength I_0 from eqn. (4.11) in the book (assume $m_i = C_i$ and no complexes).

Answer.

$$
I_0 = 1/2 \sum C_i Z_i^2 = 0.1 \cdot 1^2 + 0.08 \cdot (-1)^2 + 0.03 \cdot (-2)^2 + 0.02 \cdot 2^2 = 0.19
$$
 (9)

1.3. Calculate the activity coefficients γ , for all 4 ions, using Davies formula (eqn. (4.14) in Appelo's book). This formula is applicable for $I_0 < 0.5$. Is this fulfilled?

Assume the temperature coefficient $A = 0.51$ as given by a temperature of 25°C.

Calculate the activity coefficient of Ca^{2+} and Na^{+} using Truesdell-Jones' formula (4.13) together with Table 4.3. Use that $B = 0.33e10/m$

Compare your answers with Figure 4.2.

Answer. Davies:

$$
\log \gamma_{\text{Na}^+} = \log \gamma_{\text{Cl}^-} = -0.51 \cdot 1^2 \left(\frac{\sqrt{0.19}}{1 + \sqrt{0.19}} - 0.3 \cdot 0.19 \right) = \log(0.749) \tag{10}
$$

$$
\log \gamma_{\text{SO}_4^{2-}} = \log \gamma_{\text{Ca}^{2+}} = -0.51 \cdot 2^2 \left(\frac{\sqrt{0.19}}{1 + \sqrt{0.19}} - 0.3 \cdot 0.19 \right) = \log(0.315) \tag{11}
$$

TJ:

Ion specific parameters:

$$
Ca: a = 5.0e - 10m, b = 0.165 \t SO4: a = 5.0e - 10m, b = -0.04 \t (12)
$$

Activity coefficients:

$$
\log \gamma_i = -\frac{0.51(\pm 2)^2 \sqrt{0.19}}{1 + 0.3 \cdot 5.0 \sqrt{0.19}} + b_i \cdot 0.19 = -0.538 + 0.19b_i \tag{13}
$$

$$
= -.507(Ca) \tag{14}
$$

$$
= -0.546(SO4)
$$
 (15)

$$
\gamma_{ca} = 0.311\tag{16}
$$

$$
\gamma_{so4} = 0.285\tag{17}
$$

1.4. Anhydrite $CaSO₄$ is a mineral which is formed by the reaction:

$$
\text{CaSO}_4\text{ (s)} \rightleftharpoons \text{Ca}^{2+}\text{ (aq)} + \text{SO}_4^{2-}\text{ (aq)}\tag{18}
$$

The solubility constant at 25° C is $10^{-4.35}$.

Based on the composition of the fluid (still assuming no complexes), calculate the ion activity product IAP, the saturation state Ω and saturation index SI for anhydrite.

PS: Remember to use *activity a* in the calculations, where $a = \gamma C$ (apply results from Davies eq). Is the solution stable, i.e. will anhydrite mineral form?

Answer.

$$
IAP = a_{\text{Ca}^{2+}}a_{\text{SO}_4^{2-}} \tag{19}
$$

$$
= \gamma_{\text{Ca}^{2+}} C_{\text{Ca}^{2+}} \gamma_{\text{SO}_4^{2-}} C_{\text{SO}_4^{2-}} \tag{20}
$$

$$
= 0.315 \cdot 0.02 \cdot 0.315 \cdot 0.03 = 0.0000595 = 10^{-4.23}
$$
 (21)

$$
\Omega = IAP/K_{CaSO_4} = \frac{10^{-4.23}}{10^{-4.35}} = 10^{0.12} = 1.32
$$
\n(22)

$$
SI = \log_{10} \Omega = 0.12 \tag{23}
$$

Since $\Omega > 1$ or equivalently $SI > 0$ the solution is oversaturated on anhydrite and should precipitate this mineral. Note however that we have not considered the effect of aqueous complexes.

1.5. Now assume that two aqueous complexes, Na_2SO_4 and CaSO_4 , can form by the reactions

$$
CaSO_4^0 \text{ (aq)} \quad \rightleftharpoons \quad Ca^{2+} \text{ (aq)} + SO_4^{2-} \text{ (aq)} \tag{24}
$$

$$
\text{NaSO}_4^-\text{ (aq)} \quad \rightleftharpoons \quad \text{Na}^+\text{ (aq)} + \text{SO}_4^{2-}\text{ (aq)}\tag{25}
$$

where $K_{\text{CaSO}_4^0} = 10^{-2.3}$ and $K_{\text{NaSO}_4^-} = 10^{-0.7}$.

- a) Write 3 mass balance equations (for Ca^{2+} , Na⁺ and SO_4^{2-}) to express the relation between the total concentrations C, the concentration of free ions m_i , where $i = Ca^{2+}$, Na⁺ and SO²⁻ and the concentration of complexes n_i where $i =$ CaSO⁰₄ and NaSO₄⁻.
- b) Express 2 equilibrium equations for the reactions (23)-(24).

The 5 above equations should be solved to determine the composition of the brine in terms of the 5 concentrations $m_i(3), n_i(2)$. This will be done using some simplifications and iterative procedures.

- c) In the equations involving Na^+ : Assume the concentration of Na complexes is very small compared to the amount of Na by replacing m_{Na^+} with C_{Na^+} , thus eliminating the unknown m_{Na^+} . Update the involved equations.
- d) Solve the system for the 5 unknowns m_i (3) and n_i (2) using the 5 mentioned equations and simplification (that eliminates m_{na}). Tip: Reduce the system to 1 equation and solve with Excel or another method.
- e) Given the complex concentrations, find an improved estimate of m_{na} using the original mass balance for Na.
- f) Calculate the fraction of free ions for Na, Ca and SO4: m_i/C_i .

Answer.

a) Mass balance equations:

$$
C_{\text{SO}_4^{2-}} = m_{\text{SO}_4^{2-}} + n_{\text{CaSO}_4^0} + n_{\text{NaSO}_4^-}
$$
\n(26)

$$
C_{\text{Ca}^{2+}} = m_{\text{Ca}^{2+}} + n_{\text{CaSO}_4^0}
$$
\n
$$
(27)
$$

$$
C_{\text{Na}^+} = m_{\text{Na}^+} + n_{\text{NaSO}_4^-}
$$
\n(28)

b) Equilibrium equations:

$$
K_{\text{CaSO}_4^0} = \frac{\gamma_{\text{Ca}^{2+}} m_{\text{Ca}^{2+}} \gamma_{\text{SO}_4^{2-}} m_{\text{SO}_4^{2-}}}{\gamma_{\text{CaSO}_4^0} n_{\text{CaSO}_4^0}} \tag{29}
$$

$$
K_{\text{NaSO}_4^-} = \frac{\gamma_{\text{Na}} + m_{\text{Na}} + \gamma_{\text{SO}_4^2} - m_{\text{SO}_4^2}}{\gamma_{\text{NaSO}_4^-} n_{\text{NaSO}_4^-}} \tag{30}
$$

c) The approximation $m_{\text{Na}^+} = C_{\text{Na}^+}$ replaces (27) and we have one less unknown. The equilibrium equation for NaSO4 becomes:

$$
K_{\text{NaSO}_{4}^{-}} = \frac{\gamma_{\text{Na}} + C_{\text{Na}} + \gamma_{\text{SO}_{4}^{2}} - m_{\text{SO}_{4}^{2}}}{\gamma_{\text{NaSO}_{4}^{-}} n_{\text{NaSO}_{4}^{-}}} \tag{31}
$$

d) Reformulate the system such that

$$
n_{\text{CaSO}_4^0} = m_{\text{Ca}^{2+}} m_{\text{SO}_4^{2-}} \frac{\gamma_{\text{Ca}^{2+}} \gamma_{\text{SO}_4^{2-}}}{\gamma_{\text{CaSO}_4^0} K_{\text{CaSO}_4^0}} = m_{\text{Ca}^{2+}} m_{\text{SO}_4^{2-}} K_1,
$$
\n(32)

$$
K_1 = \frac{\gamma_{\text{Ca}^{2+}} \gamma_{\text{SO}_4^{2-}}}{\gamma_{\text{CaSO}_4^0} K_{\text{CaSO}_4^0}} = \frac{0.315 \cdot 0.315}{1 \cdot 10^{-2.3}} = 19.80,\tag{33}
$$

$$
n_{\text{NaSO}_4^-} = m_{\text{Na}^+} m_{\text{SO}_4^{2-}} \frac{\gamma_{\text{Na}^+} \gamma_{\text{SO}_4^{2-}}}{\gamma_{\text{NaSO}_4^-} K_{\text{NaSO}_4^-}} = m_{\text{Na}^+} m_{\text{SO}_4^{2-}} K_2,\tag{34}
$$

$$
K_2 = \frac{\gamma_{\text{Na}} + \gamma_{\text{SO}_4^{-}}}{\gamma_{\text{NaSO}_4^{-}} K_{\text{NaSO}_4^{-}}} = \frac{0.749 \cdot 0.315}{1 \cdot 10^{-0.7}} = 1.18
$$
\n(35)

 K_1, K_2 are defined above such to collect the constant parameters.

Substitute the complex concentrations n_i given by (31) and (33) into the mass balance equations.

$$
C_{\rm SO_4^{2-}} = m_{\rm SO_4^{2-}} + m_{\rm Ca^{2+}} m_{\rm SO_4^{2-}} K_1 + m_{\rm Na^+} m_{\rm SO_4^{2-}} K_2 \tag{36}
$$

$$
= m_{\text{SO}_4^{2-}}(1 + m_{\text{Ca}^{2+}}K_1 + m_{\text{Na}^+}K_2)
$$
\n(37)

Solve for $m_{\text{SO}_4^{2-}}$:

$$
m_{\rm SO_4^{2-}}(m_{\rm Ca^{2+}}) = \frac{C_{\rm SO_4^{2-}}}{(1 + m_{\rm Ca^{2+}}K_1 + m_{\rm Na^+}K_2)}
$$
(38)

Do the same for the Ca equation:

$$
C_{\text{Ca}^{2+}} = m_{\text{Ca}^{2+}} + m_{\text{Ca}^{2+}} m_{\text{SO}_4^{2-}} K_1 \tag{39}
$$

Eliminate $m_{\text{SO}_4^{2-}}$ from the above equation using the relation $m_{\text{SO}_4^{2-}}(m_{\text{Ca}^{2+}})$:

$$
m_{\text{Ca}^{2+}} = C_{\text{Ca}^{2+}} - \frac{m_{\text{Ca}^{2+}} C_{\text{SO}_4^{2-}}}{(1 + m_{\text{Ca}^{2+}} K_1 + m_{\text{Na}^+} K_2)} K_1
$$
\n
$$
(40)
$$

The above equation is of the form $x = f(x)$, where $x = m_{Ca^{2+}}$ is the only unknown.

It can be solved by plotting the line $y = x$ and the function $y = f(x)$ to see where they cross.

Another option is to use that since $x = f(x)$ the equation above should return a value that approximates the correct solution. A good starting point is assuming $x = C_{ca}$. $f(x)$ will return an estimate of m_{Ca} with better approximation for each iteration.

By the iteration procedure we get $m_{Ca^{2+}} = 0.0140 \text{mol/L}$. Backsubstitution leads to

$$
m_{\text{SO}_4^{2-}} = \frac{C_{\text{SO}_4^{2-}}}{(1 + m_{\text{Ca}^2} + K_1 + m_{\text{Na}^+} K_2)} = 0.0215 \text{ mol/L}
$$
 (41)

$$
n_{\text{CaSO}_4^0} = C_{\text{Ca}^{2+}} - m_{\text{Ca}^{2+}} = 0.02 - 0.0140 = 0.00596 \text{ mol/L}
$$
 (42)

$$
n_{\text{NaSO}_4^-} = m_{\text{Na}^+} m_{\text{SO}_4^2^-} K_2 = 0.1 \cdot 0.0215 \cdot 1.18 = 0.00254 \text{ mol/L}
$$
 (43)

e) Updated values for Na:

$$
m_{\text{Na}^+} = C_{\text{Na}^+} - n_{\text{NaSO}_4^-} = 0.1 - 0.00254 = 0.0975 \text{ mol/L}
$$
 (44)

Note that mass balance is ensured, while equilibrium is not. In practice we should update ionic strength, activity coefficients and iterate the equation system until all equations are fulfilled.

f)

$$
\frac{m_{so4}}{C_{so4}} = \frac{0.0215}{0.03} = 0.717\tag{45}
$$

$$
\frac{m_{ca}}{C_{ca}} = \frac{0.014}{0.02} = 0.70\tag{46}
$$

$$
\frac{m_{na}}{C_{na}} = \frac{0.0975}{0.10} = 0.975\tag{47}
$$

Note that the assumption $m_{na} \approx C_{na}$ is validated.

1.6. m_i represents the free ions of main species available to reactions. Assuming γ are the same (Davies), recalculate the IAP and saturation state Ω for anhydrite. Is the solution stable with respect to anhydrite? Is the effect of complexes significant?

Answer.

$$
IAP = \gamma_{\text{Ca}^{2+}} m_{\text{Ca}^{2+}} \gamma_{\text{SO}_4^{2-}} m_{\text{SO}_4^{2-}} \tag{48}
$$

$$
= 0.315 \cdot 0.014 \cdot 0.315 \cdot 0.0215 = 0.0000299 = 10^{-4.52}
$$
 (49)

$$
\Omega = IAP/K_{CaSO_4} = \frac{10^{-4.52}}{10^{-4.35}} = 10^{-0.17} = 0.676
$$
\n(50)

The more accurate calculation shows that by taking complexes into consideration the solution is actually undersaturated with respect to anhydrite (since Ω < 1).