PET565 PART B: EXERCISE SET 1

Important notes

- In all *reaction* calculations concentrations should enter with numerical magnitude of the unit *molality* M: M = mol / kg w.
- For simplicity we will assume 1L = 1L brine = 1L water = 1kg water.
- The units of activity, activity coefficients and ionic strength are dimensionless.

1. Exercises

1.1. 0.04 mol NaCl, 0.03 mol Na₂SO₄ and 0.02 mol CaCl₂·2H₂O are mixed into 1 L water. Find the concentration C of the ions Na⁺, Cl⁻, SO₄²⁻ and Ca²⁺.

1.2. Given the composition C, calculate the ionic strength I_0 from eqn. (4.11) in the book (assume $m_i = C_i$ and no complexes).

1.3. Calculate the activity coefficients γ , for all 4 ions, using Davies formula (eqn. (4.14) in Appelo's book). This formula is applicable for $I_0 < 0.5$. Is this fulfilled?

Assume the temperature coefficient A = 0.51 as given by a temperature of 25°C.

Calculate the activity coefficient of Ca²⁺ and Na⁺ using Truesdell-Jones' formula (4.13) together with Table 4.3. Use that B = 0.33e10/m

Compare your answers with Figure 4.2.

1.4. Anhydrite $CaSO_4$ is a mineral which is formed by the reaction:

$$CaSO_4 (s) \rightleftharpoons Ca^{2+} (aq) + SO_4^{2-} (aq)$$
(1)

The solubility constant at 25° C is $10^{-4.35}$.

Based on the composition of the fluid (still assuming no complexes), calculate the ion activity product IAP, the saturation state Ω and saturation index SI for anhydrite.

PS: Remember to use *activity* a in the calculations, where $a = \gamma C$ (apply results from Davies eq). Is the solution stable, i.e. will anhydrite mineral form?

1.5. Now assume that two aqueous complexes, Na_2SO_4 and $CaSO_4$, can form by the reactions

$$\operatorname{CaSO}_4^0(\operatorname{aq}) \rightleftharpoons \operatorname{Ca}^{2+}(\operatorname{aq}) + \operatorname{SO}_4^{2-}(\operatorname{aq})$$
 (2)

$$\operatorname{NaSO}_4^-(\operatorname{aq}) \rightleftharpoons \operatorname{Na}^+(\operatorname{aq}) + \operatorname{SO}_4^{2-}(\operatorname{aq})$$
 (3)

where $K_{\text{CaSO}_4^0} = 10^{-2.3}$ and $K_{\text{NaSO}_4^-} = 10^{-0.7}$.

- a) Write 3 mass balance equations (for Ca²⁺, Na⁺ and SO₄²⁻) to express the relation between the total concentrations C, the concentration of free ions m_i , where $i = \text{Ca}^{2+}$, Na⁺ and SO₄²⁻ and the concentration of complexes n_i where $i = \text{Ca}\text{SO}_4^0$ and NaSO₄⁻.
- b) Express 2 equilibrium equations for the reactions (2)-(3).

The 5 above equations should be solved to determine the composition of the brine in terms of the 5 concentrations $m_i(3), n_i(2)$. This will be done using some simplifications and iterative procedures.

- c) In the equations involving Na⁺: Assume the concentration of Na complexes is very small compared to the amount of Na by replacing $m_{\rm Na^+}$ with $C_{\rm Na^+}$, thus eliminating the unknown $m_{\rm Na^+}$. Update the involved equations.
- d) Solve the system for the 5 unknowns m_i (3) and n_i (2) using the 5 mentioned equations and simplification (that eliminates m_{na}). Tip: Reduce the system to 1 equation and solve with Excel or another method.
- e) Given the complex concentrations, find an improved estimate of m_{na} using the original mass balance for Na.

PET565 PART B: EXERCISE SET 1

f) Calculate the fraction of free ions for Na, Ca and SO4: m_i/C_i .

1.6. m_i represents the free ions of main species available to reactions. Assuming γ are the same (Davies), recalculate the *IAP* and saturation state Ω for anhydrite. Is the solution stable with respect to anhydrite? Is the effect of complexes significant?