PET565 PART B: EXERCISE SET 4

GOALS

• Become familiar with the analytical solution for tracer flow (advection + diffusion / dispersion)

IMPORTANT NOTES

The analytical solution is also implemented in a Matlab code ('tra_ads.m') which accounts for advection, dispersion and linear adsorption.

The analytical solution for advection and dispersion at a fixed boundary concentration c^{inj} and initial concentration c_i is given by equation (3.66), repeated below:

$$c(x,t) = c_i + \frac{c^{inj} - c_i}{2} \left[erfc(\frac{x - vt}{\sqrt{4D_L t}}) + exp(\frac{vx}{D_L}) erfc(\frac{x + vt}{\sqrt{4D_L t}}) \right]$$

1. Exercises

1.1. Assume a brine with concentration $c_0 = 10$ M is injected into a core of 0.05 m length, containing brine with initial concentration $c_i = 5$ M. The dominant mechanisms are dispersion and advection. Assume a dispersion coefficient $D_L = 1e - 4m^2/hr$ and water velocity of 0.05m/hr.

- Sketch the concentration profile after 0.5 hrs using equation (3.66). You can use Excel or the table with the erfc function or the Matlab code.
- Sketch the produced concentration at the outlet position x = 0.05 m as a function of injected pore volumes.
- Now let the dispersion coefficient be reduced to $D_L = 1e 5m^2/hr$ (this makes dispersion less significant). What is the effect on the concentration profile?
- Now assume there is no advection by setting v = 0, and only diffusion. Show that equation (3.66) can be reduced to equation (3.58).
- In the case where only diffusion is present, plot the concentration profile after 5hrs using $D_L = 1e 5m^2/hr$ (a representative diffusion coefficient). What is the difference compared to when advection is present?
- Calculate the time at which the concentration c = 7.5 reaches the outlet position x = 0.05m for this case, using equation (3.58).

1.2. A brine is injected with 2 species (SCN⁻ and SO₄²⁻) both having concentration $c^{inj} = 10$ mM into a core of 0.05 m length, and the initial concentrations are $c_i = 0$ mM. The dominant mechanisms are dispersion and advection. The SO₄²⁻ species can adsorb, while SCN⁻ is a tracer. Assume a dispersion coefficient $D_L = 1e - 4m^2/hr$ and water velocity of 0.05m/hr. The porous cross section is 5 cm².

- Assume the adsorbing species SO_4^{2-} has a linear isotherm q = kc. Plot the concentration profiles along the core after 1 hr assuming k = 0.05, 0.25 and 0.5.
- Plot the produced concentration time profiles for the same cases during 2 injected pore volumes.
- Assume the case k = 0.5 corresponds to a water-wet core with residual oil, while the case k = 0.05 is for a strongly oil-wet core. Calculate the adsorbed amount of moles in each case after flooding the cores by
 - Integrating the difference in concentration time profiles,
 - and by calculating the amount of adsorbed species q(c) in the core for a given concentration.
- Calculate the wettability index of the core.

$$\operatorname{erf} \left(\beta\right) = \frac{2}{\sqrt{\pi}} \int_{0}^{\beta} e^{-\epsilon^{*}} d\epsilon$$
$$\operatorname{erf} \left(-\beta\right) = -\operatorname{erf} \beta$$
$$\operatorname{erfc} \left(\beta\right) = 1 - \operatorname{erf} \left(\beta\right)$$

β	erf (β)	erfc (β)
0	0	1.0
0.05	0.056372	0.943628
0.1	0.112463	0.887537
0.15	0.167996	0.832004
0.2	0.222703	0.777297
0.25	0.276326	0.723674
0.3	0.328627	0.671373
0.35	0.379382	0.620618
0.4	0.428392	0.571608
0.45	0.475482	0.524518
0.5	0.520500	0.479500
0.55	0,563323	0.436677
0.6	0.603856	0.396144
0.65	0.642029	0.357971
0.7	0.677801	0.322199
0.75	0.711156	0.288844
0.8	0.742101	0.257899
0.85	0.770668	0.229332
0.9	0.796908	0.203092
0.95	0.820891	0.179109
1.0	0.842701	0.157299
1.1	0.880205	0.119795
1.2	0.910314	0.089686
1.3	0.934008	0.065992
1.4	0.952285	0.047715
1.5	0.966105	0.033895
1.6	0.976348	0.023652
1.7	0.983790	0.016210
1.8	0.989091	0.010909
1.9	0.992790	0.007210
2.0	0.995322	0.004678
2.1	0.997021	0.002979
2.2	0.998137	0.001863
2.3	0.998857	0.001143
2.4	0.999311	0.000689
2.5	0.999593	0.000407
2.6	0.999764	0.000236
2.7	0.999866	0.000134
2.8	0.999925	0.000075
2.9	0.999959	0.000041

FIGURE 1. Table for evaluation of the error and complementary error function