

FACULTY OF SCIENCE AND TECHNOLOGY

DATE: May 18, 2016

SUBJECT: PET 565 - Core scale modeling and interpretation

TIME: 4 hours

AID: No printed or written means allowed. Definite basic calculator allowed.

THE EXAM CONSISTS OF 5 PROBLEMS ON 3 PAGES

REMARKS: You may answer in English or Norwegian. Exercises 1 - 2 (part A) and exercises 3 - 5 (part B) are given equal weight.

Problem 1.

(a) Consider the conservation law

(*)
$$u_t + f(u)_x = 0, \qquad x \in \mathbb{R} = (-\infty, +\infty)$$

with initial data

**)
$$u(x, t = 0) = \phi(x).$$

- We assume that f'' > 0. The expression

$$(***)$$
 $u(x,t) = \phi(x - f'(u(x,t))t)$

is then a general solution of (*) with (**), subject to the condition

$$1 + \phi'(x_0)f''(\phi(x_0))t \neq 0.$$

Verify this by performing a direct calculation (i.e. putting (***) into (*) and (**)).

- (b) Based on (***) compute an expression for u_x.
 Explain the concept of breaking time for the equation (*). Can you say something about the behavior of the characteristics at breaking time?
- (c) Consider a shock wave moving to the left with speed $s = -\frac{\Delta x}{\Delta t}$. Given that u_L and u_R are the solution values to the left and the right of the shock, respectively, the Rankine-Hugoniot condition states that

$$s = \frac{f(u_R) - f(u_L)}{u_R - u_L}.$$

- Show how to obtain this expression by integrating equation (*) over the region $R = [x_1, x_1 + \Delta x] \times [t_1, t_1 + \Delta t].$

(d) Consider (*) with $f(u) = \frac{1}{3}u^2$ and

$$\phi(x) = \begin{cases} 2, & 0 \le x < 2; \\ 0, & \text{otherwise} \end{cases}$$

- Consider the two Riemann problems, one at x = 0 and the other at x = 2, respectively. Compute solutions in terms of shock waves and/or rarefaction waves. - Compute the time T_c when the two waves will start to interact.

(e) Utilize the Rankine-Hugoniot condition in order to compute the solution for $t > T_c$, for the problem discussed in (d).

Problem 2.

Fig. 1. Fractional flow curves vs. normalized water saturation for CASE 1 and CASE 2 to the left and corresponding df/dS curves to the right.

The Buckley-Leverett (B-L) equation for water-oil transport (horizontal flow) is given by:

$$\frac{\partial S}{\partial t} + \frac{\partial f\left(S\right)}{\partial x} = 0 \qquad \qquad x \in \left[0,1\right] \qquad \qquad (*)$$

where S is normalized water saturation, t is dimensionless time and x is normalized length.

The equation (*) can further be developed to (**) below.

$$\frac{\partial S}{\partial t} + f'(S)\frac{\partial S}{\partial x} = 0 \tag{(**)}$$

- a) Show how (**) can be derived from (*). What is the quantify f'(S) representing?
- b) Sketch the general steps involved for determining the water saturation shock front height and the water saturation profile behind the front (S > S_f) for a system with a given fractional flow curve.
- c) Determine the time when water breakthrough occurs for CASE 1 (called TB1) and CASE 2 (called TB2)?
- d) Let water be injected into two different core samples having fractional flow curve characteristics corresponding to CASE 1 and CASE 2 above. What is the expected water-cut exactly at the time when water is breaking through at the outlet of the core sample for CASE 1 and CASE 2? We assume that water-cut is equal to water fractional flow value meaning that we assume $B_w = B_o$ which should be a reasonable assumption in a laboratory test using dead oil and low pressures during in the experiments.
- e) Calculate oil recovery for both cases at the time when water breakthrough occurs for CASE 1 i.e., at TB1.

Problem 3. A brine contains 0.15 mol/L Na₂SO₄ consisting of the ions Na⁺ and SO₄²⁻.

a) Calculate the ionic strength.

In the following we consider dissolution of calcite $CaCO_3$ in this brine, according to

$$CaCO_3 \quad \rightleftharpoons \quad Ca^{2+} + CO_3^{2-}, \qquad K_{calcite} = 10^{-8.5} \tag{1}$$

The dissolved species are assumed not to affect the ionic strength. The carbon content is assumed to be mainly in form of CO_3^{2-} .

- b) Calculate activity coefficients of Na⁺, Ca²⁺, CO₃²⁻ and SO₄²⁻.
 c) Without accounting for complexes, how many moles CaCO₃ per L can be dissolved in this brine?

Problem 4. This is a continuation of Problem 3, considering how the formation of complexes influences the solubility of calcite in the given brine. The complex $CaSO_4^0$ can form according to

$$CaSO_4^0 \rightleftharpoons Ca^{2+} + SO_4^{2-}, \qquad K_{caso} = 10^{-2.5}$$
⁽²⁾

- a) Write down the following 5 equations:
 - Equilibrium of the aqueous complex reaction (2) according to the law of mass action
 2 mass balance equations for Ca²⁺ and SO₄²⁻ species
 Equilibrium of the calcite dissolution reaction (1)
 The relation between the concentrations of CO₃²⁻ and Ca²⁺

 - Specify which variables are unknown.

PS: Express the equations using total concentrations C_i , concentrations of free species m_i and concentrations of complexes n_{ij} . You do NOT have to solve the equations.

Problem 5. A core contains $c=0 \mod/L$ of a species initially and is then injected with a brine containing c=1 mol/L. The species adsorbs according to an isotherm $q(c) = c^3$. Assume a retardation model can be applied.

- a) Sketch the concentration profile along the core after flooding 1 pore volume.
- b) How many pore volumes must be flooded before the core stops adsorbing more species?
- c) After the core is flooded sufficiently with the 1 mol/L brine, the core is cleaned by flooding a brine with c = 0 mol/L. How many pore volumes of the new brine must be injected to remove all the species from the core?

Formulas.

$$I = 1/2 \sum_{i} m_i Z_i^2 \tag{3}$$

$$\log_{10} \gamma_i = -0.51 Z_i^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I} - 0.3I} \right)$$
(4)

$$R_c = 1 + \frac{dq}{dc},$$
 (broadening front) (5)

$$R_f = 1 + \frac{\Delta q}{\Delta c},$$
 (sharpening front) (6)