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Problem 1.

(a) Consider the linear transport equation

(∗) ut + e−tux = 0, x ∈ R = (−∞,+∞)

with initial data

(∗∗) u(x, t = 0) = φ(x).

Compute the solution u(x, t) and verify that it satisfies (*) and (**).

(b) Make a sketch of the characteristics in the x − t coordinate system. Use this sketch
and explain by words the transport process described by (*).

(c) Now we choose φ(x) = exp(−x2).
Make a sketch of the solution when time goes to infinity.

(d) Formulate a discrete scheme based on the upwind principle for solving the problem
in (a). We consider the domain [−L,L] and assume a grid of M cells with cell center

x1, . . . , xM . The scheme allows us to compute {un+1
j }j=M

j=1 where we assume that

un+1
0 = un+1

M+1
= 0.

Demonstrate how we can show the estimate
M∑
j=1

|un+1
j | ≤

M∑
j=1

|unj |

under an appropriate condition on ∆t
∆x

.

(e) Compute the solution as in (a) but where we have added a source term such that we
now consider

(∗)′ ut + e−tux = x+ e−t, x ∈ R = (−∞,+∞)

Check that the new solution satisfies (∗)′.

Problem 2.

(a) In the following we consider a horizontal 1D reservoir.
- State the single-phase porous media mass balance equation in 1D (without source
term) and identify the various variables (rock and fluid).
- Introduce Darcy’s law and derive an equation for the pressure where it is assumed
that φ = φ(p), ρ = ρ(p), and permeability and viscosity are constant.
- Assuming a weakly compressible rock (compressibility cr is small) we get a linear
relation for φ(p).

φ(p) = φ0[1 + cr(p− p0)],

where p0 and φ0 are reference pressure and porosity. Use this together with the
assumption that the fluid is incompressible and show that we then can obtain a
pressure equation of the form

(∗) pt = κpxx, x ∈ R = (−∞,+∞),

1



2

and identify the constant parameter κ > 0.

(b) Verify that

(∗∗) p(x, t) =
1√
π

∫ x

2
√

κt

−∞

e−θ2dθ

satisfies (*).
What must be the initial condition corresponding to the solution (**) ?

(Hint: use that
∫
∞

−∞
e−θ2dθ =

√
π )

(c) Next, consider (*) with κ = 1
9
on the spatial domain [−1, 1]. We assume the boundary

conditions
p(x = −1, t) = 0, p(x = 1, t) = 1.

Divide the domain into 6 cells with points x1, x2,. . . , x6 located at the center of each
cell. Formulate a discrete version of (*) based on an explicit time discretization for
cells j = 2, . . . , 5.
Set

pn+1
1 = 0, pn+1

6 = 1

consistent with the boundary condition.

(d) Use the scheme defined in (c) and compute the numerical solution after a time T = 1
by using two time steps, i.e., ∆t = 1/2 with initial data as given in (b).



Exam Part B – Solving Nonlinear Equations & Modelling of Well Flow 
 

There are 11 questions in total.  Some formulas, equations and Matlab codes are found in 

Appendixes. This part constitutes 50 % of exam. 

 

Exercise 3 – Bisection method 

a) The quadratic 24.0)6.0)(4.0( 2  xxxx  has zeros at x = 0.4 and x = 0.6. Why can we 

not choose a = 0 and b = 1 as our initial search interval to pick out one of the roots using the 

bisection method ? 

 

b) We will consider the function 2)(  xexf x . Write down the necessary matlab code to plot 

the roots of this function.  Here you should be careful with choosing the correct x interval such 

that the roots are shown on the graph. 

 

 

c) Consider the equation  02  xe x . We want to pick out the largest root. The root shall be 

found with an accuracy such that  05.0)( 3  ftolxf . Fill out the following table until a 

satisfactory solution is found. 

 

Iteration x1 x2 x3 f(x1) f(x2) f(x3) 

1       

2       

3       

etc       

 

 

d) Explain how you would change the code in Appendix B to solve the problem given in c) 

 

 

 

 

 

 

 

 



Exercise 4 - Well pressures & Cuttings transport 

We are considering a vertical well that is 5000 meter deep in total. The mudweight is 1.7 sg and we 

use a waterbased mud (gas kicks will migrate in static well). 

The BOP is situated at the sea bottom with a riser connecting it to surface. The riser has an inner 

diameter of 19 inches. The distance from the rig floor to the BOP is 1000 meters. A 9 5/8” casing with 

inner diameter 8.5 inches has been run to 4000 m and is hanging in the wellhead just below the BOP. 

We have continued drilling an 8 ½” hole.  

 

 

 

 

The drillpipe has an outer diameter of 5.5 inches and runs from the rig down to bottom of the well. 

a) In the annulus below the BOP, we must have that the annular flow velocity must be at least 150 

ft/min.  What must the minimum flowrate in liters per minute be then ? 

 

 

  



b) Let us assume that a flowrate of 1000 lpm  was adequate for hole cleaning in the annulus below 

the BOP. The riser has a much larger diameter than the rest of the well. Hence, in order to ensure 

proper cuttings transport also in the riser, a boost line provides additional flow in the riser. What 

must the flowrate from the boost line into the riser be in liters per minute to also ensure that the 

cuttings is transported in the riser ? 

For the remaining questions, we do not consider the use of the boost line. 

c) During circulation with 1000 lpm we have that the annular friction is 25 bars. Calculate the ECD 

(equivalent circulating density) at bottom in sg. 

 

d) If a kick is taken, BOP has to be closed and the kick will at a later stage be circulated out of the 

well through the chokeline using a specific kill rate of e.g. 500 liters per minute.  The chokeline 

has a quite small inner diameter, typical 3 inches. 

 

In order to do this safely one need to approximate the friction in the chokeline. In operations, 

they estimate this by the following operation at regular intervals. 

 

1) Pump mud up the riser with 500 lpm and monitor pump pressure, e.g Ppump,riser = 220 bar 

2) Close BOP and pump up through chokeline with 500 lpm and monitor pump pressure, e.g. 

Ppump,choke =230 bar 

3) Then they say that chokeline friction is equal to  Ppump,choke - Ppump,riser= 10 bar 

Explain what kind of assumption they make when doing this!  

e)  

A kick has been taken at 5000 meters. The BOP was shut in and kept closed and the kick migrated 

to just beneath the BOP. The pressure at the BOP was monitored and the following pressure 

build up was seen in the figure below (next page). We assume that the mud is incompressible.  

Try to answer the following question. 

 

What is the pressure of the zone that induced the kick and what is the S value in the gas slippage 

model? 

 



 
 

 

Exercise 5 – Conservation laws 

a) What kind of a model should be used to simulate the pressure build up seen in Exercise 4 (steady 

state or transient). Explain why! 

 

b) The following ordinary differential equation )(
z

p
gp

z

fric

l








  can be integrated across a 

vertical well segment and we obtain the following formula fricl pzgpp  21 .  When will 

1p have smallest value when comparing upward and downward flow. Explain why! 

 

  



 

Appendix A – Some Units & Formulas 
1 inch =2.54 cm = 0.0254 m 

1 feet = 0.3048 m 

1 bar = 100000 Pa 

1 sg = 1 kg/l     (sg -  specific gravity) 

QM                    M massrate (kg/s), Q Volumerate  (m3/s),  density (kg/m3) 

AvQ                       Q Volumerate  (m3/s),  v  velocity m/s. A  area m2 

0981.0 hp      p (bar),  density ( sg), h – vertical depth (m) 

C
T

VP



 , from Ideal gas law, NB T is in Kelvin and the relation to Celsius is 15,273CK  

CVP   , Boyles law  (temperature is assumed constant) 

  



 

Appendix B 
 

Main.m 

 

% Main program that calls up a routine that uses the bisection  
% method to find a solution to the problem f(x) = 0. 
% The search intervall [a,b] is specified in the main program.  
% The main program calls upon the function bisection which again calls upon 
% the function func. 

  
% if error = 1, the search intervall has to be adjusted to ensure  
% f(a) x f(b)<0 

  
% Specify search intervall, a and b will be sent into the function 
% bisection 
 a = 4.0; 
 b = 5.0; 

   
% Call upon function bisection which returns the results in the variables  
% solution and error.  
  [solution,error] = bisection(a,b); 

  
 solution % Write to screen. 
 error  % Write to screen. 

 

Bisection.m 

 

function [solution,error] = bisection(a,b) 

  
% The numerical solver implemented here for solving the equation f(x)= 0  
% is called Method of Halving the Interval (Bisection Method) 

  
% You will not find exact match for f(x)= 0. Maybe f(x) = 0.0001 in the 

end.  
% By using ftol we say that if abs(f(x))<ftol, we are satisfied. We can  
% also end the iteration if the search interval [a,b] is satisfactory 

small.  
% These tolerance values will have to be changed depending on the problem  
% to be solved. 

  

  
 ftol = 0.01; 
 

% Set number of iterations to zero. This number will tell how many 
 % iterations are required to find a solution with the specified accuracy. 

  
  noit = 0; 

  
  x1 = a; 
  x2 = b; 



  

  
  f1 = func(x1); 
  f2 = func(x2); 

  

  
%   First include a check on whether f1xf2<0. If not you must adjust your 
%   initial search intervall. If error is 1 and solution is set to zero,  
%   then you must adjust the search intervall [a,b]. 

  

  
 if (f1*f2)>=0  
     error = 1; 
     solution = 0; 
 else 
 % start iterating, we are now on the track. 
     x3 = (x1+x2)/2.0; 
     f3 = func(x3); 

  
     while (f3>ftol | f3 < -ftol) 
        noit = noit +1 ; 

                   
        if (f3*f1) < 0  
           x2 = x3; 
        else    
           x1 = x3; 
        end  

         
        x3 = (x1+x2)/2.0;  
        f3 = func(x3); 
        f1 = func(x1); 

         
     end  
     error = 0; 
     solution = x3; 
     noit % This statement without ; writes out the number of iterations to 

the screen. 
 end   

 

func.m 
function f = func(x) 

  

  
  f = x^2-4*x+2; 

 

  



Appendix C 
% Program where the Larsen Cuttings Transport Model is implemented 

  
%  First specify all input parameters: 

  
do = 8.5; % Outerdiameter (in) ( 1 in = 0.0254 m) 
di = 5; % Innerdiameter   (in)  
rop = 33 % Rate of Penetration - ROP ft/hr (1 ft = 0.3048m) 
pv = 15 % Plastic viscosity (cP)  
yp = 16 % Yield point (lbf/100ft2) 
dcutt = 0.1 % Cuttings diameter (in) (1 inch = 0.0254 m) 
mw = 10.833 % Mudweight (ppg - pounds per gallon) 1 ppg = 119.83 kg/m3. 
rpm = 80 % rounds per minute 
cdens = 19 % cuttings density (ppg - pounds per gallon) 
angstart = 50 % Angle with the vertical 

  
% vcut - Cuttings Transport Velocity (CTF in Larsens paper) 
% vcrit - Critical Transport fluid velocity (CTFV) in Larsens paper. This 
% is the minimum fluid velocity required to maintain a continously upward 
% movement of the cuttings. 
% vslip - Equivalent slip velocity (ESV) defined as the velocity difference 
% between the cuttings and the drilling fluid 
% vcrit = vcut+vslip 
% All velocities are in ft/s. 
% ua - apparent viscosity 

  
% It should be noted that the problem is nested. Vcrit depends on vslip 
% which again depends on an updated/correct value for vcrit. An iterative 
% approch on the form  x(n+1) = g(x(n)) will be used. 

  
for i = 1:8 

  
ang(i)=angstart+i*5     
vcut = 1/((1-(di/do)^2)*(0.64+18.16/rop)); 

  
vslipguess = 3; 
vcrit = vcut + vslipguess; 

  
% Find the apparent viscosity (which depends on the "guess" for vcrit) 
ua = pv+ (5*yp*(do-di))/vcrit 

  
% Find vslip based on the "guessed apparent viscosity". This needs to be  
% updated until a stable value is obtained. "Iterative approach". 
if (ua <= 53) 
 vslip = 0.0051*ua+3.006; 
else  
 vslip = 0.02554*(ua-53)+3.28; 
end  

  
%Now we have two estimates for vslip that can be compared and updated in a  
% while loop. The loop will end when the vslip(n+1) and vslip (n) do not 
% change much anymore. I.e the iterative solution is found. 
n=1; 
while (abs(vslip-vslipguess))>0.01 
 vslipguess = vslip; 
 vcrit = vcut + vslipguess; 
% Find the apparent viscosity (which depends on the "guess" for vcrit) 
  ua = pv+ (5*yp*(do-di))/vcrit; 



  
% Find vslip based on the "guessed apparent viscosity". This needs to be  
% updated until a stable value is obtained. "Iterative approach". 
  if (ua <= 53) 
   vslip = 0.0051*ua+3.006; 
  else  
   vslip = 0.02554*(ua-53)+3.28; 
  end 
  n=n+1; 
  vslip  % Take away ; and you will se how vslip converges to a solution 
end % End while loop 

  
%  
% Cuttings size correction factor: CZ = -1.05D50cut+1.286 
 CZ = -1.05*dcutt+1.286 
% Mud Weight Correction factor (Buoancy effect) 
  if (mw>8.7) 
  CMW = 1-0.0333*(mw-8.7) 
  else 
  CMW = 1.0 
  end 

  
% Angle correction factor   

  
CANG = 0.0342*ang(i)-0.000233*ang(i)^2-0.213 

  
vslip = vslip*CZ*CMW*CANG;   % Include correction factors. 

  
% Find final minimum velocity required for cuttings transport (ft/s). 

  
vcrit = vcut + vslip 

  
vcritms = vcrit*0.3048 % Velocity in m/s 

  
Q = 3.14/4*((8.5*0.0254)^2-(5*0.0254)^2)*vcritms % (m3/s) 
Q = Q*60*1000  % (lpm) 

  
yrate(i)=Q 
end  

  
plot(ang,yrate) 

 

 

 

 

 

 

 

 



Appendix D – Steady State Model for Two Phase Flow 
Conservation of liquid mass 

0)( 



lll vA

z
                                                                                                                                                                                                                             

Conservation of gas mass 

0)( 



ggg vA

z
       

Conservation of momentum. 

)(
z

p
gp

z

fric

mix








           

Gas slippage model (simple): 

SKvv mixg   (K=1.2)                                                                                                                 

Liquid density model (simple) 

2

)(
)(

L

O

lol
a

pp
p


  , assume water: 1000lo kg/m3, PapO 100000 , 1500La m/s    

Gas density model (simple) 

2
)(

g

g
a

p
p  , ideal  gas: 316ga m/s.                                                                                                  

Friction model 

The friction model presented here is for a Newtonian fluids like water. The general expression for the 

frictional pressure loss gradient term is given by: 

)(

)(2

inout

mixmixmixfric

dd

vabsvf

z

p






 
  (Pa/m)        

A - (m2) 

i - phase densities (kg/m3), liquid – > i=l, gas ->i =g 

iv  - phase velocities (m/s) 

p - pressure (Pa) 

g gravity constant 9.81 m/s2 



i  - phase volume fractions taking values between 0 and 1. 1 gl  . 

ggllmix   - mixture density 

ggllmix vvv   - mixture velocity 
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