Excercises in PVT-Analysis

Tor Austad 2008.

Problem 1.

The initial pressure of a dry gas reservoir is 3500 psia and the reservoir temperature is 140 $^{\circ}$ F. The composition is given as mole fraction:

Component	y _i
C1	0.8686
C2	0.0609
C3	0.0261
i-C4	0.0048
n-C4	0.0077
i-C5	0.0022
C6	0.0038
C7+	0.0228

Molecular weight and specific density of the C7+ fraction are given as: $M_{C7+}=128$ and $\gamma_{C7+}=0.8195$, respectively. Calculate B_g at: 3500, 3000, 2000, 1000, and 100 psia.

Problem 2.

The following gas composition is given as mole fraction:

Component	yi
N_2	0.10
C1	0.70
C2	0.05
C3	0.05
n-C4	0.05
n-C5	0.05

The temperature and pressure are given as: 160 °F and 3000 psia, respectively.

Calculate:

- a. Z-factor of the gas by using Eilerts method to adjust for N_2 .
- b. B. Z-factor by using the "corresponding state theorem" directly.

PS!! Use the available information on p. 12.

Problem 3.

A gas with the following composition is sampled at 600 psig and 92 °F:

Component	y _i (mole %)
N_2	0.26
CO_2	1.92
C1	84.58
C2	8.49
C3	3.06
i-C4	0.36
n-C4	0.77
i-C5	0.16
n-C5	0.19
C6	0.12
C7+	0.09

Molecular weight and specific density of the C7+ fraction are given as: $M_{C7+}=103$ and $\gamma_{C7+}=0.70$.

a. Calculate the molecular weight and specific density of the gas and use these values to determine the pseudocritical pressure and temperature, $_{p}P_{c}$ and $_{p}T_{c}$, of the gas. Correct the values by using the correction listed in the table below (corrections per mole%):

Compound	_p P _c	_p T _c
CO ₂	+4.4	-0.8
N ₂	-1.7	-2.5
H_2S	+6.0	+1.3

- b. Calculate pPc and pTc for the C7+ fraction and calculate the pseudocritical values for the gas by using the "corresponding state theorem" directly. Compare the results with with the calculate value in a.
- c. Calculate the Z-value and the density (g/cm^3) of the gas at the sampling conditions.
- d. Determine the viscosity of the gas at: 3000, 2000, and 1000 psia and 92 $^{\circ}$ C.

Problem 4.

The initial reservoir pressure of a dry gas reservoir is 3200 psia. The reservoir temperature is 213 oF and the gas composition is given by:

Component	yi
	(molefraction)
CO_2	0.0010
N_2	0.0207
C1	0.8612
C2	0.0591
C3	0.0358
n-C4	0.0172
n-C5	0.0050

The Corresponding State Theorem is applied for the calculations.

- a. Calculate the initial gas density in the reservoir
- b. Calculate Bg, and determine the initial gas in place (IGIP) for a HCPV= 10^9 ft³.
- c. Determine the recovery factor when the reservoir pressure has decreased to 1000 psia.
- d. Explain how to estimate IGIP by plotting produced volume, G_p (sc), versus corresponding values of P/Z. Derive the formula.

Problem 5.

The following data are given for a gas condensate field:

- $\gamma_{\text{STO}} = 53.3 \text{ }^{\circ}\text{API}$
- $(GOR)_{sep} = 40795 \text{ SCF/Sbbl}$
- $(\gamma_g)_{sep} = 0.6174$
- $(\gamma_g)_{st} = 1.090$
- $T_{res} = 190 \,{}^{o}F$
- $P_{res} = 2900 \text{ psia}$
- $(Q_g)_{sep} = 3.130 \times 10^6 \text{ SCF/D}$
- $(Q_g)_{st} = 0.213 \times 10^6 \text{ SCF/D}$
- $Q_{STO} = 76.725 \text{ Sbbl/D}$

Calculate the volume depletion of the reservoir per day (volume reservoir fluid removed from the reservoir per day) by determining the B_0 factor using the following methods:

- a. The Standing-Katz correlation
 - a. $\gamma_{\text{well}}/\gamma_{\text{g}} = f(\text{Sbbl STO}, \text{ gas gravity})$
 - b. $_{p}P_{c}$ and $_{p}T_{c} = f(\gamma_{well})$
- b. Standings chart no. 1.
- c. Sage and Olds formula.

PS!! The volume depletion of reservoir per day is then: $B_0 * Q_{STO}$

Problem 6.

A reservoir fluid is produced through a 3 step separator system, and the following data are given:

	1. Separator	2. Separator	Stock tank
GOR (SCF/Sbbl)	414	90	25
Gas gravity, γ_g	0.640	0.897	1.54

- $\gamma_{STO} = 27.4$ °API or $\gamma_{STO} = 0.981$
- $P_{res} = Pb = 3280 psia$
- $T_{res} = 218 \ {}^{o}F$

PS!! Use 1 Sbbl STO as the basis for your calculations.

- a. Calculate:
 - a. Average specific density of produced gas, $(\gamma_g)_{av}$.
 - b. Weight of gas
 - c. Weight of STO
 - d. Preudo liquid density of dissolved gas at sc.
 - e. Pseudo liquid volume of gas at sc.
 - f. Pseudo liquidv density of reservoir fluid at sc.
 - g. Density of reservoir fluid at reservoir conditions
- b. Compare the calculated value by using Standings chart no. 3 directly.

Problem 7.

Separator oil and gas are recombined to give 1 lb-mole reservoir fluid, i. e. $n_g + n_o = 1$. The following data are given:

- (GOR)_{sep} as SCF/sep bbl
- $(\rho_o)_{sep}$ as lb/ft^3
- $(M_o)_{sep}$

Show that :

a.
$$(GOR)_{sep} = \frac{379.5n_g(\rho_o)_{sep}5.615}{n M}$$

$$n_{g} = \frac{(M_{o})_{sep}(GOR)_{sep}}{(M_{o})_{sep}(GOR)_{sep} + 2131(\rho_{o})_{sep}}$$

$$n_{o} = \frac{2131(\rho_{o})_{sep}}{(M_{o})_{sep}(GOR)_{sep} + 2131(\rho_{o})_{sep}}$$

c. Use the formula to chech the composition of the well stream from the listed page of the PVT-report below.

Petroleum Reservoir Enginaering DALLAS. TEXAS

Page 2A of 11

File

22-

	6.6.75				
omponent	Separator Li Mul Per C		Separator Mol Par Cant		Well Stream Mol Per Cent
2 (Instable 0					
lydrogen Sulfide					
arbon Dioxide	0.41		1.92	There are a set	1.31
litrogen	0.04		0.26	a	0.17
fethane	13.71		84.58		55.74
thang	6.43		8.49	2.139	7.65
ropane	6.12		3.06	0.840	4.31
Butane	1.39	1	0.36	0.117	0.78
Butane	4.08		0.77	0.242	2.12
o-Pentane	1.39		0.16	0.058	.0.66
-Pentane	2.41		0.19	0.069	1.09
lezanes	5.60		0.12	0.049	2.35
leptanes plus	58.42		0.09	0.041	23.82
	100.00		100.00	3.555	100.00
roperties of Heptanes plus					
API gravity (a) 60° F.	31.6				
Specific gravity (1) 60/60° F.	1 8570				0.857
Molecular weight	. 235 .	-			235
alculated separator gas gravity	(nir - : 1.000)	0	. 673		3 90.9
alculated gross heating value for	separator Pa		LIAS BTH		
r cubic foot of dry gas @ 14.69	6 pais and 6	50° F.			
			<u>92</u> .		

rimary separator gas/separator liquid ratio _____984___SCF/Bbl @ 92* F.

The fattor for bp- (alforendia, "Standings Marth

۰.

Problem 8.

A separator test of a reservoir fluid is given below.

Calculate:

- a. (GOR)_{total} as SCF/Sbbl
- b. Average value of specific gravity of produced gas, $(\gamma_g)_{av}$
- c. Density of reservoir fluid at P_b by using pseudo liquid density of produced gas.
- d. Use Standings chart no. 3 to check $(B_o)_b$
- e. Use Standings chart no. 3 to check P_b.

Page 7A of 11	
File	
Weil 1	

BEPARATUN PREBURE PBI GAUGE	SEPARATOR TEMPERATURE * P.	GAB/UIL RATIO	GAB/UIL BATIO	STOCK TANK	Formation Volume Factor (3)	Separator Volume Factor (4)	
1000	150	916	1067			1.165	0.707
250	80	115	123			1.064	0.724
to O	60	111	111	.36.9	1.770	1.000	1.032

SEPARATOR TESTS OF Reservoir Fluid SAMPLE

Reservoir temp. 274°F

Bubble point presence : 5185 psia

- (1) Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of oil & indicated pressure and temperature.
- (2) Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of stoc tank oil @ 60° F.
- (3) Formation Volume Factor is barrels of saturated oil @ 5170 PSI gauge and 274° F. per barrel of stock tank oil @ 60° F.
- (4) Separator Volume Factor is barrels of oil @ indicated pressure and temperature pe; barrel of stock tank oil @ 60° F.

Problem 9.

A muliticomponent system has the following composition:

Component	Mole fraction
C2	0.200
C3	0.400
i-C4	0.100
n-C4	0.300

 K_i -values are determined from charts, and the values used are found in the Excel sheet wher the problem is solved.

- a. Calculate the composition of vapor and liquid at 80 $^{\circ}$ F and 100 psia. (0.6<V<0.7).
- b. Determine P_d at 80 °Fand the composition of the vapor and liquid (50< P_d <100 psia).
- c. Determine P_b at 80 °F and the composition of vapor and liquid (100< P_b <200 psia).

Problem 10.

Gas and oil are sampled from a test separator. The following date are given:

- $P_{res} = 4713 \text{ psia}$
- $T_{res} = 237 \,{}^{o}F$
- $(P)_{sep} = 237 \, {}^{o}F$
- $(T)_{sep} = 58 \,^{\circ}F$
- $(GOR)_{sep} = 404 \text{ SCF/Sbbl}$
- $(\gamma_g)_{sep} = 0.714$
- $Z_g = 0.952$

The samples are submitted to a PVT-lab for analysis.

Lab data for the separator oil:

- Flash to SC:
 - \circ GOR = 201 SCF/Sbbl
 - \circ (B_o)_{flash} = 1.15 sep bbl/Sbbl
 - $\circ \quad \gamma_g = 1.2962$
 - $\circ (\rho_o)_{sto} = 0.8372$

The bubble point of recombined reservoir fluid at T_{res} was determined to be $P_b = 2672$ psig.

	Olje	Gass	Sep. værke
	Mo1-%	Mo1-%	Mo1-%
H ₂ S Hydrogen Sulfide			
CO ₂ Carbon Dioxide	1-1-1 L 7. 68 11	2.80	0.79
N2 Nitrogen	- 2-31 -	0.53	0.15
C1 Methane	0.00	28.28	7.97
C ₂ Ethane	0.05	19.13	5.43
C ₃ Propane	0.85	29.70	8.98
iC ₄ iso-Butane	0.53	3.14	1.27
nC ₄ normal Butane	2.84	9.53	4.72
iC ₅ iso-Pentane	1.87	1.93	1.89
nC ₅ normal Pentane	3.42	2.52	3.16
C ₆ Hexanes	5,96	1.37	4.67
C ₇ + Heptanes-Plus	84.48	1.06	60.97
TOTAL	100.00	100.00	100.00
lecular Weight	217	37.5	166
nsity ¹	0,8372	1.5879	
s Gravity (air=1)		1.2962	
+ Molecular Weight	243	98.3	242
+ Density	0.8495	0.8517	0.8514
oil (g/cc) gas (g/l)			

The composition of gas and STO from the flash of separator fluid is given below:

 M_{STO} , ρ_{STO} are determined experimentally. The other values in the table are calculated.

Check the following data:

- a. M_{C7+} for the STO
- b. Calculate ρ_{C7+} for the STO.
- c. Composition of recombined separator fluid
- d. Calculate $(\rho_{o})_{sep}$ at separator conditions.

Lab data for the separator gas are given below:

		Out of the second s		Liquid	I Yield
		Mass-%	Mo1-%	$(L/1000 \text{ Sm}^3)$	(gal/Mscf)
H ₂ S	Hydrogen Sulfide			abititut heroph	
CO2	Carbon Dioxide	7.03	3.30		
-	Nitrogen	2.31	1.70		
N ₂ C1	Methane	61.67	79.37		
	Ethane	13.19	9,06	322.0	2.41
C ₂	Propane	9.93	4.65	171.0	1.28
C3	iso-Butane	1.18	0.42	18.3	0.14
iC ₄	normal Butane	2.84	1.01	42.5	0.32
nC ₄		0.52	0.15	7.4	0.06
iC ₅	iso-Pentane	0.63	0.18	8.6	0.07
nC ₅	normal Pentane	0.37	0.09	4.8	0.04
C ₆ - C ₇ +	Hexanes Heptanes-Plus	0.33	0.16	3.8	0.03
~7 [•]	TOTAL	100.00	100.00	578.4	4.35

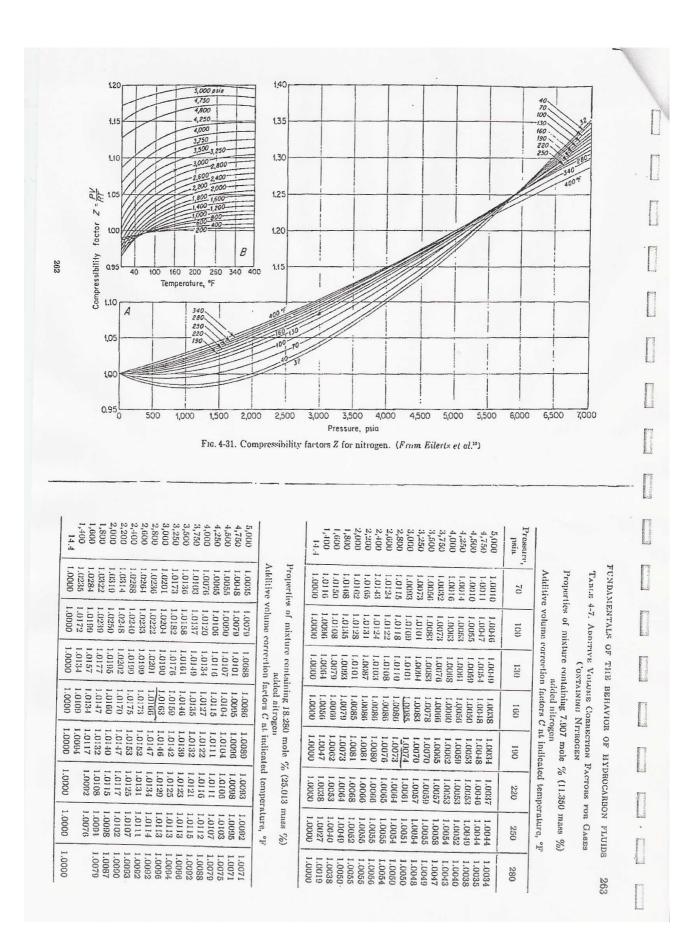
GAS PROPERTIES

Average Molecular Weight	:	20.6			
Average Gas Gravity	:	0.7130	(air=1)		
Heptanes-Plus Molecular Weight	:	98.7			
Density at Standard Conditions	:	0.8734	9/Liter		
Density at Separator Conditions	:		9/Liter		
Calculated Critical Pressure	:	46.65	bar	676.9	psia
Calculated Critical Temperature	:	-56.0	°C _	390.9	°R
Compressibility Factor at Separator Conditions .	:	0.9420	1		
Ideal Gas Heating Value	: .	42.81	MJ/m ³ _	1149	- Cuft

The following data are to be checked:

- e. pPc and pTc for the gas (the values for n-C7 are to be used for C7+)
 f. Zg at separator conditions.
 g. Liquid yield for C2 and C3 as Gal/1000 SCF or L/1000 Sm³.

- h. Correct the $(GOR)_{rig}$.


		Recombined Separator Liquid		Separator Gas		Recombined Reservoir Fluid	
		Mass-%	Mo1-%	Mass-%	Mo1-%	Mo1-%	
H ₂ S	Hydrogen Sulfide						
co,	Carbon Dioxide	0.21	0.79	7.03	3.30	1.86	
N2	Nitrogen	0.03	0.15	2.31	1.70	0.81	
c1	Methane	0.77	7,97	61.67	79.37	38.43	
c2	Ethane	0.98	5.43	13.19	9.06	6,98	
C3	Propane	2.39	8.98	9.93	4.65	7.13	
iCa	iso-Butane	0.45	1.27	1.18	0.42	0.91	
nC ₄	normal Butane	1.65	4.72	2.84	1.01	3.14	
iC	iso-Pentane	0.82	1.89	0.52	0.15	1.15	
nCs	normal Pentane	1.37	3.16	0.63	0.18	1.89	
c ₆	Hexanes	2.37	4.67	0.37	0.09	2.72	
C7+	Heptanes-Plus	88.96	60.97	0.33	0.16	34.99	
	TOTAL	100.00	100.00	100.00	100.00	100.00	
Mole	ecular Weight	16	66		20.6	104	
Gas	Gravity (air=1)			0	.7130		
C ₇ + Molecular Weight		242.8		98.7		242.	
	Density	0.8	3514			0.851	

Recombination of separator gas and oil to give the reservoir fluid is shown below.

- i. Separator gas and oil are physically recombined at reservoir conditions. The total volume of fluid in the PVT cell should be 200 cm³. What is the volume of separator gas and oil that should be loaded to the cell?
- j. Check the composition of recombined reservoir fluid.
- k. Check P_b by using Standings chart no. 2.
- 1. Determine $(B_0)_b$ by using Standings chart no. 3.

Important formula/correlations in PVT-Analysis.

Temperature:	${}^{o}K = 273.15 + {}^{o}C$ ${}^{o}F = 1.8 \times {}^{o}C + 32$ ${}^{o}R = {}^{o}F + 459.69$		
Pressure:	1atm = 1013.250 mBar = 1.013250 bar = 101.3250 kPa = 0.1013250 1MPa = 10 bar psia = 14.69595 + psig 1 atm = 760.002 mmHg at 0 °C		
Density:	$\begin{array}{l} 1 \ g/cm^{3} = 62.43 \ lb/ft^{3} = 350.54 \ lb/bbl \\ 1 \ lb/ft^{3} = 16.0185 \ kg/m^{3} \\ \rho_{w} = 0.999015 \ g/cm^{3} \qquad (60 \ ^{o}F, \ 1 \ atm) \\ \rho_{w} = 0.9991 \ g/cm^{3} \qquad (15 \ ^{o}C, \ 1 \ atm) \end{array}$		
Specific density:	For liquids: Determined relative to water at sc. For gases: Determined relative to air at sc. $\gamma_o = \frac{\rho_o}{\rho_w} = \frac{141.5}{131.5 + {}^oAPI}$		
	^o API = $\frac{141.5}{\gamma_o} - 131.5$ Cragoe`s formula (empirical formula giving molecular weight of hydrocarbons): $M_o = \frac{6084}{^o API - 5.9}$ $\gamma_g = \frac{M_g}{M_{air}} = \frac{M_g}{28.96}$		
Volume:	$ \begin{array}{l} 1 \ bbl = 5.615 \ ft^3 = 0.15898 \ m^3 \\ 1 \ ft^3 = 0.0283 \ m^3 \\ 1 \ US \ Gallon = 3.785 \ litre \\ 1 \ Imp. \ Gallon = 4.546 \ litre \\ Molar \ volume \ of \ gas \ at \ standard \ conditions: \\ V_m = 379.51 \ SCF/lb \ mole \ \ (60 \ ^oF \ and \ 14.69595 \ psia) \\ V_m = 23644.7 \ cm^3/g \ mole = 23.6447 \ m^3/kg \ mole \ \ (15 \ ^oC \ and \ 101.3250 \ kPa) \\ \end{array} $		
Air:	$Z_{air} = 0.9959$ (60 °F, 14.69595 psia) $M_{air} = 28.96$		
Gas constant:	R = 10.732(psia, ft ³ , °R, lb mole) $R = 0.082054$ (atm, litre, °K, g mole) $R = 8.3145$ (kPa, m ³ , °K, kg mole)		

