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Problem 1.
(a) In the following we consider a horizontal 1D reservoir.

. (b)

v (c)

(d)

- State the single-phase porous media mass balance equation in 1D (without source
term) and identify the various variables (rock and fluid).

- Assuming a weakly compressible rock (compressibility ¢, is small) we get a linear
relation for ¢(p).

#(p) = doll + er(p — po)l;
where py and ¢y are reference pressure and porosity. Use this together with the
assumption that the fiuid is incompressible and show that we can obtain a pressure
equation of the form
(*) Pt =Epzz, z € R = (—o0, +00),
and identify the constant parameter € > 0.

Setting € = 1 in (*)} we know that

1 ﬁ: _92
)=— df
() plat)=—= [T
satisfies (*) with initial data equal to Heaviside function

0, z<0;
sat=0={ 3 750

- Make use of (**) combined with an appropriate rescaling of x and derive an expres-
sion for the solution of (*) with £ > 0.

- Sketch the solution for a fixed time T" and two different values of € in order to indi-
cate the impact from £ on the solution.

We now consider the pressure equation (*) on the domain x € (—1,1). In addition,
we introduce a source term of the form —K(p — p*) where p* is a known, constant
pressure

(*+*%) p=¢epew—K(p-p*), =ze€(-1,1), K >0 (constant)
pﬂ:(—lit) = pz("‘l, t) =0.
Demonstrate how we can derive a stability estimate for the pressure p in (***) in
terms of an estimate of fol (p — p*)*dz. What does this stability estimate tell us?

Set £ =2/5 and K = p* = 1 and introduce a discrete scheme for (***). Consider an
initial pressure pp(z)
n@={ 7 130
+z, T 20

Consider a grid of 5 cells on the domain x € (-1, 1) corresponding to

_ 4 _ 2 _ 2 _ 4
T=-z T2="5 z3 =0, T4=y Ty
Make use of the discrete scheme and compute a numerical solution after 1 time step
where At = 1/5. Check stability condition. Try to give a brief physical interpretation
of the resulting pressure solution.
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Problem 2.

(a) Consider the linear transport equation

(*) uy + (2it)uz=Q($1t1u): reR= (_Dot+o°)

with initial data
(*»*)  u(z,t=0)=d(z)

Set g(z,t,u) = 0.
- For what time interval is the model well-defined?
- Compute the solution u(z,t) by using the method of characteristics.

% - Make a sketch of characteristics and explain by words the transport process reflected
by a characteristic.

- Verify by direct computation that your solution u(z,t) satisfies (*) and (**).

(b) Consider (*) with g(z,t,u) = z.
- Compute the solution u(zx,f) by using the method of characteristics. Verify that
your solution satisfies (*) and (**)

(c) Consider the solution in (a) with initial data ¢(z) =1 — z%
- Make a sketch of the solution in the interval [-2,+2] at time t =0 and £ = 1.
- What happens with the solution as ¢ — 2?
- Describe briefly by words the transport process represented by this solution.

(d) Consider the solution in (b) with initial data ¢{(z) =1 — z2
- Make a sketch of the solution in the interval [-2,+2] at time t =0 and t = 1.
- What happens with the solution as ¢ — 27
- Describe bricfly by words the transport process represented by this solution.

(e) Now, consider the transport equation
1
u¢+§u,,=0, .’BE[O,I]
with initial data and boundary data

u(z,t =0)=0, u{z =0,t) =1.

- Describe the characteristics for this model and make a plot of some of them for z €
[0,1). Compute the general solution and make a sketch of the solution u(z,t = 1/2).

(f) Consider a scheme for the model in (e) given in the form
a™tl — i
f) J n -

" T 2Am(U;+”2 = Ul 0} =0.

based on upwind discretization. Use it to compute numerical solutions for a grid of 6
cells with cell centers T3, Z3, ... , T. Compute the solution at time ¢ = 1/2 by using
2 timesteps. For the first cell, set U,y = 1 to take into account the left boundary
condition. Make a figure where you include exact solution and numerical approximate
solution computed from the scheme.




Exam Part B - Solving Nonlinear Equations & Modelling of Well Flow

There are 11 questions in total. Some formulas, equations and Matlab codes are found in
Appendixes. This part constitutes 50 % of examn.

Exercise 3 — Bisection & Iterative method

a) We are given the function f(x)=e* —3x%. Write down a matlab code that produces a figure
identical to the one shown below. {In matlab we write the exponential function as exp(x} ).

Myfunction

el BT et —

¥

b) We want to pick out the middle root and the starting points are given. Use a table similar to the
one shown below. The solution shall be found with an accuracy such that the uncertainty in the x
value of the root is less than 0.05. Also find out what ftol should have been in this case (if we
had used a criteria on the y value of the root instead).

lteration | X1 x2 X3 f(x1) f(x2) f(x3) (x2-x1)/2
1 0 2 1 1 -4.61 -0.28 1

2

3

Etc




c) We observe that the function has a local minimum value near x = 3. Explain how you can modify
the code in Appendix B to calculate and display to computer screen the x and y value of this local
minimum. (ftol can be kept unchanged).

d) Asseenin3a, f(x)=e* —3x* =0 has three roots. We could alternatively tried to use
reformulate the problem as x = g(x) and used the iterative approach. We have obviously the

two arrangements: x = +,/(e” /3)and x = —f(e” /3). Ifwe use x, =0, these two forms will

converge to the roots near 1.0 and -0.5. However they will not work for the largest root near 4.0
even if we make an initial guess very close to the exact solution.

Can you find an alternative formulation for picking out the largest root? Choose an appropriate
value for x,and find an approximation of the root satisfying the accuracy requirement
|x,,+l —x,,l < xtol = 0.01 Finally, show how could we be guaranteed to have a solution in the

last case.

Exercise 4 - Cuttings Transport

Here, one has just started to drill the 8 % inch hole. The inclination is around 75 degrees. A 97/8
inch casing has been set at bottom but we have used a crossover to 10 % casing a bit further up in
the inclined section. The 10 % casing extends to surface. The inner diameters of the different casings
are shown on the figure below. A drillpipe with outer diameter 5 inch is used.

10 % in OD Casing

57/8in OD Casing

5in0DDP

ID = 9.66 inch

IB=8.625 inch



a) We have used the Larsen model to evaluate cuttings transport and found that the minimum
cuttings transport velocity to avoid formation of cutting beds is 250 ft/min. What is the minimum
flowrate in lpm that you will recommend for this section?

b) Will the minimum required flowrate become higher or lower in the following two cases ? 1)
Inclination is 87 degrees instead of 75. 2) The ROP (rate of penetration} is increased.

Exercise 5 - Well pressures

When drilling in carbonate structures, we can experience huge mud losses into fractures and possible

caves. The picture below shows a Karst structure at Svalbard and we can find these formations in the
Barents sea.
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Billefjorden Svalbard Pressurized mud cap drilling arrangement.

In order to drill such formations, we can adopt a pressurized mud cap drilling arrangement. The
annulus of the well is sealed with a rotating control device {(RCD) on top of annulus. There shall be a
certain pressure just below the RCD. In the annulus above the fractures and below the RCD, there
will be a static light annular mud {LAM). Drilling is performed with seawater (1.03 sg) and seawater is
circulated down the drillstring, up the lower part of the annulus and injected into the fracture system
along with the cuttings during drilling. The fracture system can both receive fluids (seawater, cuttings
etc) and produce fluids {e.g. introducing a kick into the well).

The fracture in this case will be positioned at 3000 meter and it has a pressure of 1.4 sg. It means
that if the wellpressure is slightly above that it will receive fluids and if it is slightly below it can
produce fluids {pcre pressure/fracture pressure is in some sense the same here)



a) We want to design the static LAM fluid such that there will be 10 bar pressure just below the
RCD (RCD pressure) and the well pressure at 3000 meter shall balance the 1.4 sg fracture
pressure. Show by calculation that the LAM density must be 1.37 sg.

b) The bit is at 3500 meter. We circulate seawater. What will the ECD in sg be at bottom of the
well if the friction in the annulus is 12 bar?

If a kick enters the annulus and starts to migrate upwards, an increase in RCD pressure will be seen.
The RCD pressure acts like a kick indicator (See figure below)

We will first assume that the LAM fluid is incompressible, no LAM fluid is allowed to escape
downwards into the fracture, no temperature change of the kick and no expansion of casing.

c) What will the maximum pressure that we possibly can experience at the RCD become? and
how long time will you estimate it will take before the kick reaches the RCD ?

D

d) In practice, some LAM fluid will be forced downwards and into the fractures when the kick
migrates. How will that impact on the pressure build up and the speed of the kick and explain
why? {qualitative explanation/not numbers)

Exercise 6 — Two phase flow model and conservation laws

a) In Appendix E, a copy of a part of the two-phase flow model implemented in matiab is presented.
The function wellpressure was responsible for performing zll calculations from bottom to top in a
well based on a guessed bottomhole pressure and known massrates and outlet pressure.

In wellpressure.m, there is lacking some matlab expressions for performing the calculations in
the cells {nodes). It is marked with a ? in the code where something is missing.

Write down the matlab statements that are lacking!



Appendix A - Some Units & Formulas
1inch =2.54 cm =0.0254 m

1 feet = 0.3048 m

1 bar = 100000 Pa

1sg=1kg/l (sg- specific gravity)

M=0-p M massrate (kg/s), Q Volumerate (m¥/s), p density (kg/m?)
Q=v-A4 Q Volumerate {m%/s), v velocity m/s. A area m?
p=p-h-0.0981 pbar), pdensity (sg), h—vertical depth (m)

% = (C , from ldeal gas law, NB T is in Kelvin and the relation to Celsius is K ='C+ 273,15

P.V =C,Boyles law (temperature is assumed constant)



Appendix B

Main.m

% Main program that calls up a routine that uses the bisection

% method to find a sclution to the problem £(x) = 0.

% The search intervall [a,b] is specified in the main program.

% The main program calls upon the function bisection which again calls upon
% the function func.

of

if error = 1, the search intervall has to be adjusted to ensure
% £{a) x £(b)<0

% Specify search intervall, a and b will be sent into the function
% bisection

a = 4,0;

b = 5.0;

% Call upon function bisection which returns the results in the variables
% solution and error.
[selution,errer] = bisectioni{a,b);

Bisection.m

function [sclution,error] = bisection(a,b)

¥ The numerical solver implemented here for solving the equation f£{x)= 0
% is called Method of Halving the Interval (Bisection Method)

% You will not find exact match for f(x)= 0. Maybe f{x) = 0.0001 in the
end.

% By using ftol we say that if abs(f{x))<ftol, we are satisfied. We can

% also end the iteration if the search interval [a,b] is satisfactory
small.

% These tolerance values will have to be changed depending on the problem
% to be solved.

ftol = 0.01;

% Set number of iterations to zeroc. This number will tell how many
% iterations are required to find a solution with the specified accuracy.

noit = 0;

%1l = a;
x2 = b;



£l = func{xl);
£2 func{xz);

o

First include a check on whether flx£2<0. If not you must adjust your
initial search interwvall. If error is 1 and solution is set to zero,
then you must adjust the search intervall [a,b].

o

if {£f1*£2)>=0
error = 1;
solution = 0;
else
% start iterating, we are now on the track.
x3 = (x1+x2)/2.0;
£3 = func({x3):

while (f3>»ftol | £3 < =-ftol)
noit = noit +1 ;

if {£3*f1) < O
x2 = x3;
else
x1l = x3;
end

X3
3
fi

(x1+x2)/2.0;
func(x3);
func(xl);

| |

end
error = 0;
solution = x3;

noit % This statement without ; writes out the number of iterations to
the screen.

end

func.m
function £ = func(x)

f = x"2-4*x+2;



Appendix C

% Program where the Larsen Cuttings Transport Model is implemented
% First specify all input parameters:

do B.5; % Outerdiameter (in} {( 1 in = 0.0254 m)

di 5; % Innerdiameter {in}

rop = 33 % Rate of Penetration - ROP ft/hr {1 £t = 0.3048m)

PV 15 % Plastic viscosity (cP}

yp = 16 % Yield point (1bf/100£t2}

decutt = 0.1 % Cuttings diameter (in} (1 inch = 0.0254 m)

mw = 10.833 % Mudweight (ppg - pounds per gallon} 1 ppg = 119.B3 kg/m3.
rpm = B0 % rounds per minute

cdens = 1% % cuttings density (ppg - pounds per gallon)

angstart = 50 % Angle with the vertical

% vcut - Cuttings Transport Velocity (CTF in Larsens paper)

% vcrit - Critical Transport fluid velocity (CTFV) in lLarsens paper. This
% is the minimum fluid velocity required to maintain a continously upward
% movement of the cuttings.

% vslip - Equivalent slip velocity (ESV) defined as the velocity difference
¥ between the cuttings and the drilling fluid

% verit = veut+vslip

% All velocities are in ft/s.

% ua - apparent viscosity

% It should be noted that the problem is nested. Vcrit depends on vslip

% which again depends on an updated/correct valuve for wvcrit. An iterative
% approch on the form =xz({n+l) = g{x(n)) will be used.

ang = angstart:
veut = 1/({1-{di/do)"2)={0.64+18.16/rop));

vslipguess = 3;
verit = vecut + vslipguess:

% Find the apparent viscosity (which depends on the "guess" for vecrit)
uz = pv+ (5*yp*{do-di))/vcrit

% Find vslip based on the "guessed apparent viscosity". This needs to be
§ updated until a stable value is obtained. "Iterative approach".

if {(ua <= 53}

vslip = 0.0051~ua+3.006;
else

vslip = 0.02554* (ua-53)+3.28;
end

¥Now we have two estimates for wslip that can be compared and updated in a
% while loop. The loop will end when the vslip(n+l) and vslip (n} do not
% change much anymore. I.e the iterative solution is found.
n=i;
while (abs{vslip-vslipguess))>0.01
vslipguess = vslip:;
verit = veunt + vslipguess;
% Find the apparent viscosity (which depends on the "guess" for vcrit)
ua = pv+ (5*yp*i{do-di})/vecrit;



Find vslip based on the "guessed apparent viscosity". This needs to be
updated until a stable value is obtained. "Iterative approach”.

if (ua <= 53)

vslip = 0.0051*ua+3.006;

else

vslip = 0.02554*(ua-53}+3.28;
end
n=n+1l1;
vslip % Take away ; and you will se how vslip converges to a solution

end % End while loop

%
%

]

Cuttings size correction factor: CZ = -1.05D50cut+1.286

CZ = -1.05*dcutt+1.286

Mud Weight Correction factor (Buocancy effect)

if (mw>8.7)

CMW = 1-0.0333* (mw=-8.7)
else

CMW = 1.0

end

Angle correction factor

CANG = 0.0342*ang-0.000233*ang"2-0.213

vslip = vslip*CZ*CMW*CANG; % Include correction factors.

$ Find final minimum velocity required for cuttings transport (ft/s).

vcrit = vecut + vslip



Appendix D - Steady State Model for Two Phase Flow

Conservation of liquid mass
7]

—(dpav,)=0

oz

Conservation of gas mass

o

—7(Apgagvg) =0

Conservation of momentum.

a Apﬁ-lc
—_ = — - —_—
5 P = (Pt +— )

Gas slippage model {simple):
v, = Kv, +8§ (K=1.2,5=0.5m/s})

Liquid density model (simple)

pi{p)=p, +(p—_2po)' assume water: p,, =1000kg/m®, p, =100000"a, a, = 1500 m/s

a;

Gas density model (simple)

v
2
a&'

P, (p) =5, ideal gas: a, =316 m/s.

Friction model

The friction model presented here is for a Newtonian fluid like water. The general expression for the
frictional pressure loss gradient term is given by:

Apfnc = zfpmtxvml:abs(vmu’) (Pa/m)
Az d,-d,)

4-{m?)

P, - phase densities (kg/m?), liquid — > i=l, gas -»i =g
v, - phase velocities {m/s)

M, - phase viscosity (Pa s)

p - pressure (Pa)



g —gravity constant 9.81 m/s?

@, - phase volume fractions taking values betweenOand 1. @, + &, =1.
Pmix = Q1 Py +Q, P, - mixture density

Vs = &4V; +Q,V, - mixture velocity

Hupie = Oy + 0 J1, - MiXture viscosity



Appendix E - Wellpressure.m

functien f = wellpressure{pbotguess,dasrate,liquidrate,nopoints,boxlength)

oP dP oP of of

OF OF 0P OF OF Of of o of od

o9 of oP o0 of

o0 P

NB, At first stage we assume that our outlet pressure is 1 Bar (atm
pressure). This is the physical boundary condtion that we have to ensure
that out model reaches. If a choke is present. The surface pressure will
be different. It means that if the chcoke pressure is 300 000 Pa then the
variable below should be set tc this. You change it her:

prealsurface = 300000; % Choke pressure on top of well

We now start by the deepest node with the pressure we assume: pbotguess
and the known inlet massrates at bottom. All variables are then found in
this node.

For each segment (next node), we calculate the pressure, superficial
velocities, phase velocities,volume fractions moving upwards.

We use momentum equation to calculate pressure in next

node using hydrostatic pressure and the fricticn model. The superficial
vecocities and the other variables are found using the two mass
conservation laws combined with the slip relation.

In the end, we end up with some surface

rates and a surface outlet pressure. The calculated outlet surface
pressure should equal the physical outlet condition (now 300000 Pa). We
can therefore define our wellpressure(pbot)=pcalcsurface-prealsurface.
The function will be zero if the correct bottomhole pressure is found.
Set outer/inner diameter of annulus. Define effective flowarea. Assume a
7" liner (ID 6.3") and a 3 1/2" drillpipe.

do = 0.16;

di = 0.0889;

flowarea = 3.14/4* (do*do-di*di);
Specify viscosities [Pa s]. In real life they depend on pressure and temp

0.001;
0.00001;

viscl
viscg

Define gas slippage parameters.
k 1.2;
s 0.55;

[

gas gravity constant
g = 9.81;
% The mass rate is the same at surface/atmosphere and at bottomhole since

% we have steady state. This is later
% used to find the rates at downhole conditions.



ligmassratesurf = liquidrate*rocliq(100000.0);% Mass rate of injected lig
ligmassratebhp = liqgmassratesurf; % Massrate injected at bottom of
% annulus same as injected in drillstring

gasmassratesurfinj gasrate*rogas{100000.0}; % Mass rate of injected gas
gasmassratebhpinj = gasmassratesurfinj; % Massrate injected at bottom of
tannulus same as injected in drillstring

% Here the PI model (reservoir inflow can be turned on )
f by activating the pi formula ({remove %}

prodinx = 0;
§ prodinx = 0.0144/(24*3600}; % m3/{s x Pa)

gasvolratesurface = prodinx*(20000000-pbotguess); % production rate at
$surface conditions

% Reservoir pressure is 200 bar (20000000 Pa). A bottomhole pressure

% below that will give production.

if {gasvolratesurface <0) % Just at check to avoid negative production
gasvolratesurface = 0;
end

gasmassratebhproduction = gasvolratesurface*rogas(100000.0);
% massrate at bottom equal to surface
% This is the massrate flowing from reservoir into the well!

gasmassratebhp = gasmassratebhpinj+gasmassratebhproduction;
% Add both injected and produced gasmassrate at bottom

[ 4

Now we loop from the bottom to surface and calculate accross all the
segments until we reach the outlet,

oe

Define the variables needed. Initialise them first for comp efficiency.
vl - liquid velocity, vg -gas velocity,

vgs,vls are superficial velocities of gas and ligquid.

eg-el - phase veolume fractions for gas and liquid

P - pressure.

fricgrad and hydgrad are pressure gradients {Pa/m)due

to friction and hydrostatic pressure components.

of o df o oPf of of

vl zeros (nopoints,1);
vg zeros (nopoints, 1)
vls = zeros(nopoints,1);
vgs = zeros({nopoints,1);
eg = zereos{nopeints,l):;
el zeros{nopeints, 1)
P zeros (nopoints, 1) ;
fricgrad = zeros(nopoints-1,1);
hydgrad = zeros{nopoints-1,1);

Before we loop, we define all variables at the inlet of the first
segment {at bottom). As starting point we use the fact that we know
% the mass rate of the different phases (same as on top of the well)

o oe

o

First find the rates in m3/s {downhole) using that we know the
massrates and the densities at the bottom. We use the guessed
% bottomholepressure to calculate densities which are needed to find the

oe



% flowrates. Flowrate Q = massrate/density for each phase

liquidratebhp = ligmassratebhp /rolig(pbotguess});
gasratebhp = gasmassratebhp/rogas (pbotguess);

% Find the superficial velocities (m/s)
vls(l) = liquidratebhp/flowarea;
vgs (1) gasratebhp/flowarea;

Find Phase velocities. Here we use the gas slip relation

vg = Kvmix+s = K(vls+vsg)+s or K{vlxel+vgxeg)+5. vls and vgs are
supeficial velocities and represent the phase velocity multiplied with
the phase's volume fraction.

oF o o o

vg(l) = k*{vls(l)+vgs{l})+s;
eg{l} = vgs(1)/vg{l);
el(l) = l-eg{l};:

v1{1) vlis(l)/el{l);

% Set pressure equal to guessed pressure at bottom.
pil) = pbetguess;

% Now we loop across the segments from bottom to top.

sumfric = 0;
sumhyd = 0;

for i =l:nopoints-1

% use the inlet values for each segment to calculate hydrostatic
% and friction pressure across each segment.
hydgrad{i) = (roligi{p(i))*el{i)rrogas({p(i}}*eg(i))*g;
friegrad(i) = ...
dpfric({vl(i),vg{i),el({i),eg(i),pli}),do,di,viscl,viscg);

5

-
eg({i+l) = vgs(i+l)/vgli+l);
el(i+i) = l-eg{i+l};

v1i{i+l) = vls(i+l}/elii+l);

sumfric = sumfric+fricgrad(i)*boxlength;
sumhyd = sumhyd+hydgradii}*boxlength;

end

% We have now reaced the outlet of the well and pout is our calculated

% outlet pressure. This should be equal to the real surface at the outlet
% which was defined to be 3 bar in the beginning of this function. If

% they are equal, £ = 0 and a correct bottomhole pressure has been

% guessed for.

pout = p{nopoints);
f = pout-prealsurface;






