Problem 1.

(a) Consider the linear transport equation

(*) $u_t + e^{-t}u_x = 0, \quad x \in \mathbb{R} = (-\infty, +\infty)$

with initial data

(**)
$$
u(x, t = 0) = \phi(x)
$$
.

Compute the solution $u(x, t)$ and verify that it satisfies $(*)$ and $(*^*)$.

- (b) Make a sketch of the characteristics in the $x t$ coordinate system. Use this sketch and explain by words the transport process described by (*).
- (c) Now we choose $\phi(x) = \exp(-x^2)$. Make a sketch of the solution when time goes to infinity.
- (d) Formulate a discrete scheme based on the upwind principle for solving the problem in (a). We consider the domain $[-L, L]$ and assume a grid of M cells with cell center x_1, \ldots, x_M . The scheme allows us to compute $\{u_j^{n+1}\}_{j=1}^{j=M}$ where we assume that $u_0^{n+1} = u_{M+1}^{n+1} = 0.$

Demonstrate how we can show the estimate

$$
\sum_{j=1}^{M} |u_j^{n+1}| \le \sum_{j=1}^{M} |u_j^{n}|
$$

under an appropriate condition on $\frac{\Delta t}{\Delta x}$.

(e) Compute the solution as in (a) but where we have added a source term such that we now consider

(*)'
$$
u_t + e^{-t}u_x = x + e^{-t}, \quad x \in \mathbb{R} = (-\infty, +\infty)
$$

Check that the new solution satisfies $(*)'$.

Problem 2.

- (a) In the following we consider a horizontal 1D reservoir.
	- State the single-phase porous media mass balance equation in 1D (without source term) and identify the various variables (rock and fluid).

- Introduce Darcy's law and derive an equation for the pressure where it is assumed that $\phi = \phi(p)$, $\rho = \rho(p)$, and permeability and viscosity are constant.

- Assuming a weakly compressible rock (compressibility c_r is small) we get a linear relation for $\phi(p)$.

$$
\phi(p) = \phi_0[1 + c_r(p - p_0)],
$$

where p_0 and ϕ_0 are reference pressure and porosity. Use this together with the assumption that the fluid is incompressible and show that we then can obtain a pressure equation of the form

(*)
$$
p_t = \kappa p_{xx}, \qquad x \in \mathbb{R} = (-\infty, +\infty),
$$

and identify the constant parameter $\kappa > 0$.

(b) Verify that

$$
(**) \qquad p(x,t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\frac{x}{2\sqrt{\kappa t}}} e^{-\theta^2} d\theta
$$

satisfies (*).

What must be the initial condition corresponding to the solution $(**)$? (**Hint**: use that $\int_{-\infty}^{\infty} e^{-\theta^2} d\theta = \sqrt{\pi}$)

(c) Next, consider (*) with $\kappa = \frac{1}{9}$ $\frac{1}{9}$ on the spatial domain [-1, 1]. We assume the boundary conditions

$$
p(x = -1, t) = 0,
$$
 $p(x = 1, t) = 1.$

Divide the domain into 6 cells with points x_1, x_2, \ldots, x_6 located at the center of each cell. Formulate a discrete version of (*) based on an explicit time discretization for cells $j = 2, \ldots, 5$.

Set

$$
p_1^{n+1} = 0, \qquad p_6^{n+1} = 1
$$

consistent with the boundary condition.

(d) Use the scheme defined in (c) and compute the numerical solution after a time $T = 1$ by using two time steps, i.e., $\Delta t = 1/2$ with initial data as given in (b).