Problem 1: Solution.

(a)

In the following we consider a horizontal 1D reservoir.

- State the single-phase porous media mass balance equation in 1D (without source
term) and identify the various variables (rock and fluid).

- Assuming a weakly compressible rock (compressibility ¢, is small) we get a linear
relation for ¢(p).

é(p) = ¢o[l + c(p — po)l,

where pg and ¢ are reference pressure and porosity. Use this together with the
assumption that the fluid is incompressible and show that we can obtain a pressure
equation of the form

(%) Pt = EPax, x € R = (—00,+00),

and identify the constant parameter € > 0.
Solution:
Mass balance

(Pp)e + (pu)z =0,

where ¢, p, and u are porosity, fluid density, and fluid velocity (Darcy velocity).
Darcy’s law:

This gives
(@(p)p(p))e = (—p(P)pa) = ;(p(p)pz)x
Using assumptions on ¢ and p we get
k
,0(250[1 + Cr(p - pO)]t = p¢OC7"pt = ;ppxx-

This gives us
Kk
Kpocr

Pt = EPza, €

Setting ¢ = 1 in (*) we know that

]. QL\/Z 7‘92
() bty = [ as
VT Joo
satisfies (*) with initial data equal to Heaviside function

0, =<0
p(m,tzO):{ 1, =>0.

- Make use of (**) combined with an appropriate rescaling of x and derive an expres-
sion for the solution of (*) with € > 0.

- Sketch the solution for a fixed time 7" and two different values of € in order to indi-
cate the impact from € on the solution.

Solution:

Introduce & = x/+/¢ and consider

p(l’, t) = p(:ﬁ\/g, t) = ﬁ(£'7 t)
1



Then it follows that
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Hence,
Pt = Dis
Since initial data p(z,t = 0) is the same as p(z,t = 0), we can conclude that

2f_2 1 2%/57_2
p(a,t f/ “d :ﬁ/ e do = p(x,t)

The effect of €, can be seen from the above solution is a smearing out effect on the
initial jump which increases with larger €.

(¢) We now consider the pressure equation (*) on the domain =z € (—1,1). In addition,
we introduce a source term of the form —K(p — p*) where p* is a known, constant
pressure

(k%)  pt=epe — K(p—p"), ze(-1,1), K > 0 (constant)
pz(—1,t) = py(+1,t) = 0.
Demonstrate how we can derive a stability estimate for the pressure p in (***) in
terms of an estimate of fol (p — p*)*da.
Express briefly what this stability estimate tells us?

Solution:
Introduce P = p — p* and write model as

P,=¢P,, — KP.
Multiply by P and integrate over [—1, 1] to get

1d 1 1 1 1 1 1
/ Pzdxza/ Pdex—K/ P%lx:a/ (PmP)xd:r—s/ P§—K/ Pdz <0
2.dt -1 1 —1 —1 —1 —1

by using boundary condition and negative sign of terms. This gives
1 1
/ P%(x,t)dx < / P(z,t = 0)*dz
-1

-1

(d) Set e =2/5 and K = p* =1 and introduce a discrete scheme for (***). Consider an
initial pressure po(z)

() = —x, x <0

Po | +z, z>0.

Consider a grid of 5 cells on the domain = € (—1,1) corresponding to

Make use of the discrete scheme and compute a numerical solution after 1 time steps

where At = 1/5. Try to give a brief physical interpretation of the resulting pressure
solution.



Solution:
Model:
2
bt = 510:6:1: - (p - 1)
Scheme: We have that 5% = (2/5)% = 1/2. Hence, stability condition s% <
1/2 is ok.
General Scheme:
ntl _ n At A — .l — At(p" —1
p; =D +€Aa:2 (pa:|g+1/2 pz’g—1/2) (pj )

1 1
=p;+ §(px|j+1/2 — Palj-1/2) — g(p? -1

Inserting numbers we get

1 1 1
ph= o (8 = 1) = 0) = £ (6 — 1) = 4/5— 1/22/5 = L(4/5— 1) = 4/5— 4/25 = 0.64

1 1 1 ‘
pjl' = p? + 5([27?“ —p?} - [p? —p?_l]) - 5(29? -1)= 1/2(2??—1 +p?+1) - g(p? -1), j=2,3,4
1 1 1
p5 =15+ 5(0 = [p§ — ) = £ (P — 1) = 4/5 = 1/2 2/5 = £(4/5 — 1) = 4/5 — 4/25 = 0.64
Then we get p} = (4/5,2/5,0,2/5,4/5).
Time t':

1 _ 16 13 15 13 16 —
pi=(3 35 3 3 5 )=(064 052 06 052 0.64)

The solution reflects that there is competition between diffusion (smearing out initial
pressure profile), and increase of pressure through the source term sine —(p — 1) gives
a positive contribution.

Problem 2: Solution.

(a) Consider the linear transport equation

(%) U + (%)ux = q(z,t,u), x € R = (—00,+00)

with initial data

(%) u(z,t =0) = ¢(z).

Set g(x,t,u) = 0.

Solution:
Well-defined for ¢ € [0,2). Velocity 5%; blows up as ¢ — 27.
Characteristic:

dx T

E—ﬁ, x(t—())—xg

which implies that z(t) = xoﬁ. Plotting in x-t diagram, we get a path that starts
at zg > 0 for ¢ = 0 and is bending towards +oo as t — 27. Similarly, for o < 0 the
path will go to —co ast — 27.



Solution u(zx,t):

2
Check:
— Firstly, u(x,t = 0) = ¢(x).
— Secondly,
T 2—t
Ug = ¢/(')§(—1)7 Uz = ¢I(')?
Thus,

T
u + ——u, = 0.

2—t
(b) Consider (*) with ¢(z,t,u) = x.
- Compute the solution u(zx,t) by using the method of characteristics. Verify that
your solution satisfies (*) and (**)

Solution:

Solution wu(z,t):
du(z(t),t) B 2
g =W =m0y

which gives after integration over [0, ¢]

u(x,t) — ¢p(xo) = —2x0 ln(2 ; t)

u(z,t) = ¢<$2 ; t) —x(2—1t) ln(2 _ t)

resulting in

2
Check:
Firstly, u(z,t = 0) = ¢(x).
Secondly,
— (5 2- b 2=t o2t
w=d (2D +aln(Z) +aC -5, w=¢() - @-Hn()
Thus,
x
Ut + 5 tuﬂj X

(c) Consider the solution in (a) with initial data ¢(z) =1 — 2.
Solution:

t
u(z,t) =1—2%(1 — 5)2

Ast — 27, u(x,t) — 1.

(d) Consider the solution in (b) with initial data ¢(z) = 1 — 22
Solution:

t 2—1
me=1—ﬁu—§ﬁ—x@—om(2 )



Ast — 27, u(x,t) — 1.

FIGURE 1. Left: solution without source term. Right: solution with source term.

(e) Now, consider the simpler transport equation
1
ut+§ux:0, z € [0,1]

with initial data

and boundary data
u(z =0,t) = 1.

- Describe the characteristics for this model and make a plot of some of them for
x € [0,1]. Make a sketch of the solution u(z,t = 1/2).

Solution:
Characteristics:
1 1, forz < it
z(t) = §t + %o, u(z,t) = { 0, forz > %t
and
1 1, foraz <1
u(a:,t—2)—{ 0, forx>§

(e) Present a scheme for the model in (e) given in the form

u’?“ —u” 1

(S) ! Al : +2A:1;( 12— Uilqye) = 0.

based on upwind discretization discretization. Use it to compute numerical solutions
for a grid of 6 cells with cell centers x1, zo, ... , xg. Compute the solution at time
t = 1/2 by using 2 timesteps. For the first cell, set Uy s2 = 1 to take into account the
left boundary condition.



Solution:
Scheme: We have that QAA—tx = %.

n+1
4

3 3
U :U?—*(U?—l):*"d1+1

3 1
un—"l =y — E(Un —u” ) = —u” + —ul

J J

We have that ug-) =0forj=1,...,6.
Time t':

Time ¢2:



