

FACULTY OF SCIENCE AND TECHNOLOGY

SUBJECT: PET 535: MODERN WELL DESIGN

DATE: September 2nd 2014

TIME: 0900 - 1300

AID: CALCULATOR

THE EXAM CONSISTS OF 6 PAGES

REMARKS: PLEASE STATE ASSUMPTIONS

Problem 1: Hydraulic optimisation

- a) What are the two traditional hydraulic optimisation procedures?
- b) Describe the pressure drop in Newtonian fluids depending on the flow regime. What are the flow regimes called? You are also required to explain the parameters of the equations.
- c) Describe the flow (regime) through the hydraulic system!
- d) What is the most important shortcoming of the traditional hydraulic optimisation procedures? What is the most important criteria of hydraulic optimisation?
- e) Explain a difference in the hydraulics between a tri-cone roller bit and a PDC drillbit.

Problem 2: Design of the Production Casing

We will design the production casing of a well. The following data applies:

9-5/8 in. 47 lbs/ft P110

Weight:

68.73 kg/m

Burst strength:

651 bar

Collapse:

366 bar

Tension:

6590 kN

Mud weight:

1,60 s.g. on in/outside of csg.

Inner diam.

220,5 mm

Setting depth:

2909 mMD, 2350 mTVD

Depth next hole:

3341 mMD, 2655 mTVD

Cemented interval:

2131 – 2909 mMD, 1800 - 2350 mTVD

Produktion packer at 2414 mMD, 2000 mTVD

Gas density negligible.

 $bar x cm^2 = daN$

The well is vertical down to 1000 m, followed by a sharp build up. From 1000 m to the bottom assume a constant inclination of 45 degrees.

Assume that the well is drilled from a jack-up rig with 25 m airgap. Use the enclosed prognosis, Fig. 1. Please write all assumptions.

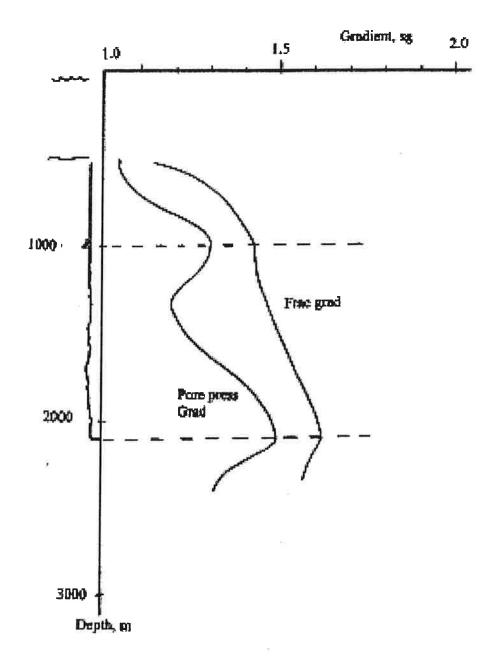
- a) Prepare a figure of the well and define two criteria for burst of the production casing, and determine the safety factor.
- b) Decide a criterion for collapse and determine the factor of safety.
- a) Determine the total weight in air of the casing string, and the buoyed weight in the well. Determine the factor of safety. Bending may be neglected.
- d) The reservoir has a vertical extent of 50 m. Propose a drilled length below the reservoir. Explain why.

Problem 3: Data normalization

You are planning a subsea infill well in a production field. Your design is based on data from the production platform which has a wellhead elevation of 120 m. You are going to use a jackup drilling rig with a air gap of 40 m. The water depth is 300 m. The data from the production platform are:

Pore press. Grad.(sg)	0.82	0.90	0.95	1.10	1.15	1.20
Depth(m)	500	700	900	1100	1300	1500

- a) Define the normalization equations.
- b) Normalise the pore pressure gradient to drillfloor level and sea level. Show all three curves in a plot.
- c) Connect each data point with a curve for the three reference levels. Explain the meaning of this curve. What do we call this curve?


Problem 4: Mud weight optimalization

- a) Define the two classical limits for the mud weight. What are the failure mechanisms?
- b) Using a simple fracturing equation, define the new optimization criterion presented in this course. What is this criterion called?
- c) Define two advantages of using this criterion. Also define two concerns.
- d) In the figure on the following page propose a mud weight schedule.

Problem 5: Temperature induced pressures

One problem with subsea wellheads is the potential of trapped pressures. The pressure inside the B-annulus may increase due to thermal effects. In the following you are asked to investigate this as follows:

- a) Show the relationship between pressure increase and temperature increase. Explain the conditions for the equation.
- b) Assume that the coefficient of thermal expansion is $3x10^{-4}$ (1/°C), and the compressibility coefficient is $-3x10^{-5}$ (1/bar). Compute the pressure increase if bottomhole temperature remains constant but the surface temperature has increased 100 °C

Some Formulas

$$P(bar) = 0.098 \times d(s.g.) \times D(m)$$

$$P_3 = Cq^m$$

$$P_2 = \rho q^2 / 2A^2 0.95^2$$

Index:	Equation:	Criterion: Fraction para	loss: Flow rate:	
1	qP_2	Max. HP	1/(m+1)	$P_1/C(m+1)$
2	$q\sqrt{P_2}$	Max. jet impact	2/(m+2)	$2P_1/C(m+2)$
3	$q3/2\sqrt{P_2}$	New A	3/(m+3)	$3P_1/C(m+3)$
4	$q^2\sqrt{P_2}$	New B	4/(m+4)	$4P_{1}/C(m+4)$
5	$q^{5/2}\sqrt{P_2}$	New C	5/(m+5)	$5P_1/C(m+5)$

$$A = q\{\rho/2P_2\}^{1/2}/0.95$$

Using the units of: density(kg/l), flowrate (l/min) and pressure (bar), the nozzle area in in² can be obtained by dividing the equation above with 122.4.

$$d_{RKB1} = d_{RKB2}D/(D-\delta h)$$

$$LOT = 2\sigma_a - P_o$$

$$P_{wf}(\gamma) = P_{wf}(0) + \frac{1}{3} (P_o - P_o^*) \sin^2 \gamma$$

$$P_{wf}(0) = \{P_{wf}(\gamma) + (\sigma_o - 1/2P_o)\sin^2\gamma\}/\{1 + 1/2\sin^2\gamma\}$$

$$\Delta \sigma_a = \Delta P_o (1-2\nu)/(1-\nu)$$

$$\Delta P_{\rm wf} = \Delta P_{\rm o} (1-3\nu)/(1-\nu)$$

$$P_{burst} = 2\sigma_{tensile} \ t/D_o$$

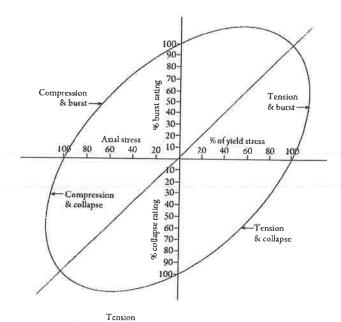
$$P_{collapse} = \{2CE/1 - v^2\}\{1/(D_o/t - 1)^2D_o/t\}$$

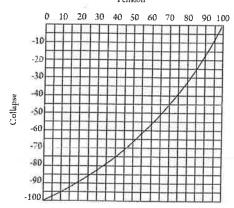
$$(\sigma_t/\sigma_{vield}) = 1/2(\sigma_a/\sigma_{vield}) + /-\{1 - 3/4(\sigma_a/\sigma_{vield})^2\}^{1/2}$$

$$\rho$$
 = (d_pD -1.03h_w)/(D - h_f - $h_w)$

$$\begin{split} d_{wf2} &= d_{wf1} \frac{D_1}{D_2} + d_{sw} \frac{D_{w2} - D_{w1}}{D_2} \\ D_2 &= D_1 + \left(D_{w2} - D_{w1}\right) + \left(D_{f2} - D_{f1}\right) \end{split}$$

$$D_2 = D_1 + \left(D_{w2} - D_{w1}\right) + \left(D_{f2} - D_{f1}\right) + \left(\frac{d_{ob1}}{d_{ob2}} - 1\right) \left(D_1 - D_{w1} - D_{f1}\right)$$


$$\frac{\Delta V}{V} = \frac{1}{2} \alpha \Delta T$$
$$\Delta P = \left(\frac{-1}{c}\right) \frac{\Delta V}{V}$$

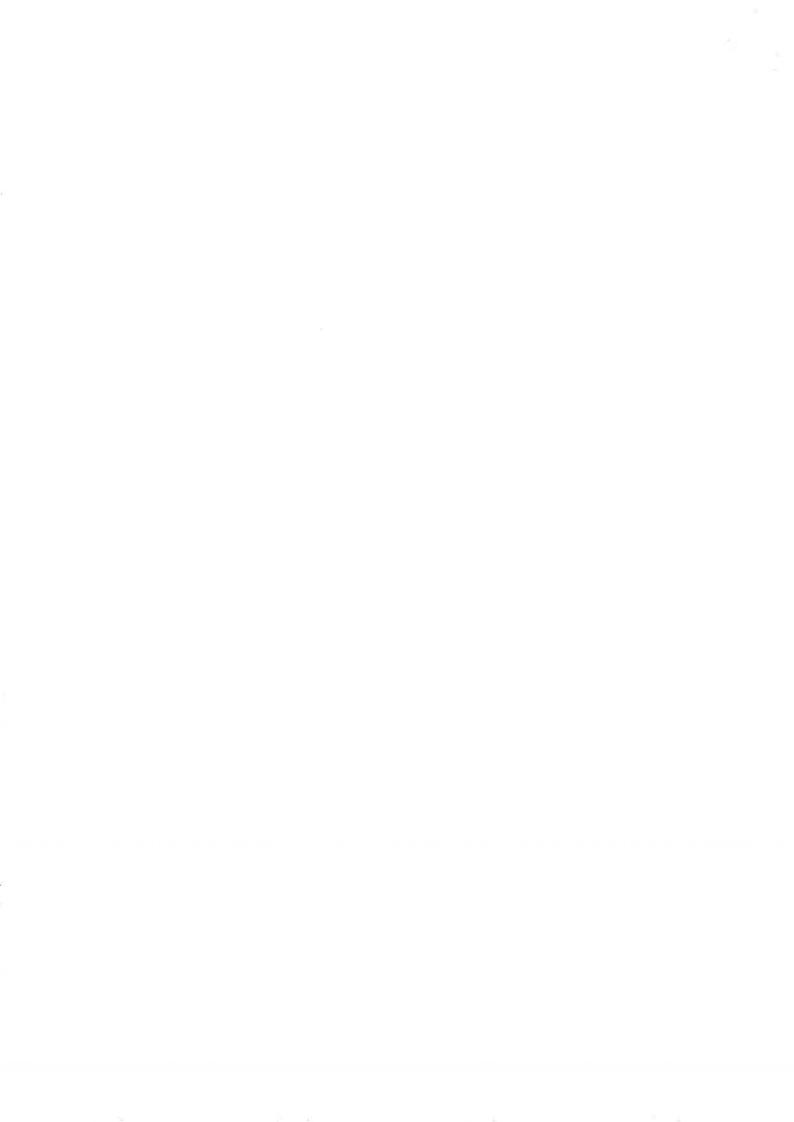

Units

1 bar = $14.5 \text{ psi} = 10^5 \text{ Pa}$

1 ft = 0.3048 m = 12 in

 $1 \text{ lb}_f = 0.454 \text{ kp} = 4.45 \text{ N}$

$$D_2 = D_1 + \left(D_{w2} - D_{w1}\right) + \left(D_{f2} - D_{f1}\right) + \left(\frac{d_{ob1}}{d_{ob2}} - 1\right) \left(D_1 - D_{w1} - D_{f1}\right)$$


$$\frac{\Delta V}{V} = \frac{1}{2} \alpha \Delta T$$
$$\Delta P = \left(\frac{-1}{c}\right) \frac{\Delta V}{V}$$

Units

1 bar =
$$14.5 \text{ psi} = 10^5 \text{ Pa}$$

1 ft =
$$0.3048$$
 m = 12 in

$$1 lb_f = 0.454 kp = 4.45 N$$

