

FACULTY OF SCIENCE AND TECHNOLOGY

SUBJECT: PET 535: MODERN WELL DESIGN

DATE: MAY 22, 2017

TIME: 0900 - 1300

AID: CALCULATOR

THE EXAM CONSISTS OF 5 PROBLEMS AND 5 PAGES

REMARKS: PLEASE STATE ASSUMPTIONS

Problem 1. Casing Design

You are asked to design a surface casing. The design parameters are as follows:

Depth of casing:	1100 m
Depth to seabed:	225 m
Depth to sea level:	25 m
Depth to top of tail cement:	1000 m
Depth to top lead cement:	225 m
Depth next open hole section:	1820 m
Design fracture gradient at casing shoe:	1.57 s.g.
Pore pressure gradient, casing shoe:	1.03 s.g.
Pore pressure gradient, next section:	1.40 s.g.
Formation fluid density:	0.76 s.g.
Mud density:	1.20 s.g.
Mud density, next open hole section:	1.50 s.g.
Lead cement density:	1.45 s.g.
Tail cement density:	1.90 s.g.

The casing data are:

18-5/8 in. grade X-70, 84.5 lb/ft. casing

Weight:

186 kg/m Crossectional inner area: 1527 cm².

Burst strength: 197 bar

Collapse resistance: 43 bar

Pipe body yield strength: $800 \times 10^3 \text{ daN}$

Remember to define the important assumptions.

a) Prepare a drawing of the situation: the casing during installation. Define two criteria for casing collapse. Compute the design factor for these scenario.

- b) Prepare a drawing of the situation: the burst design. Define a burst scenario. Compute the design factor for burst.
- c) Define two scenarios for tension design. Compute the design factors.
- d) Compute the casing test pressure.
- e) Compute the kick margin of the casing section.
- f) Define the weak point in the well.

Problem 2: Casing strength

The following casing types are available:

Size(in):): Grade, weight(lb/ft): Outer diam.(mm):		Inner diam.(mm)	
20	P110, 133	508	475,7	
13-3/8	K55,88.2	346.1	314.3	
10-3/4	N80, 60.7	273	245.4	
7	L80, 20	177.8	164	

- a) Compute the burst strength of each casing. List the casings from strongest to weakest in burst.
- b) Are these casings suitable for use in the same well? Explain which of the casings could be replaced, and indicate if it should be stronger or weaker.
- c) A closed pipe is pressurized from the inside. Define two failure modes, and show which failure mode is dominating.

Problem 3. Rock Mechanics

The following principal stresses are given: 3, 5 and 7

- a) Define the cubic stress equation
- b) Determine the 2nd deviatoric invariant.
- c) Rank the principal stresses above and define which of them lead to collapse failure.
- d) What are the three invariants?

Problem 4: Mud weight optimalization

- a) Define the two classical limits for the mud weight. What are the failure mechanisms?
- Using a simple fracturing equation, define the new optimization criterion presented in this course. What is this criterion called?
- 6 Define two advantages of using this criterion. Also define two concerns.
- c) In the figure on the following page propose a mud weight schedule.

Problem 5: Fundamentals

Please identify the most correct answer below. Just write answer number, f.eks. a1, b1, and so on.

- a) Which equilibrium condition dominate geomechanics:
 - 1) Stress equilibrium
 - 2) Newtons 2nd law
 - 3) Maxwell equations
 - 4) Conservation of mass
- b) Which statement is correct:
 - 1) The dog leg is the vertical angle
 - 2) The DLS act in the vertical plane
 - 3) The DLS is a 3 dimensional parameter
 - 4) The DL is the derivative of the angle
- c) Stresses transforms in space according to:
 - 1) Linearly
 - 2) Squared trigonometric law
 - 3) Cubic trigonometric law
 - 4) None of the above
- d) Replacing the mud in the drill string with sea water leads to:
 - 1) Reduction in surface pipe tension

 $.130 \times \left(1 - \frac{1.03}{7.8}\right) = 1$

7 0x - 11 0y + 20y - 13 = 0

びょう マック

130 × (1 × 1,3)= 12

- 2) Increase in surface pipe tension
- 3) No change in surface pipe tension
- 4) Differential sticking
- e) Surface casing is installed:
 - 1) Through the marine riser
 - 2) Before riser is installed
 - 3) Through the BOP
 - 4) After riser is installed
- f) On jack-up rigs
 - 1) Always implement riser margin
 - 2) New rigs uses dynamic positioning
 - 3) Have the weight of the well on mud line suspension system
 - 4) Can work in 200 m of water
- g) Wellhead systems
 - 1) Horizontal X-mas trees are mostly used subsea
 - 2) Vertical X-mas trees are mostly used subsea
 - 3) BOP is mainly used during production of the well
 - 4) One well barrier is sufficient for low pressure wells

Some Formulas

$$P(bar) = 0.098 x d(s.g.) x D(m)$$

$$P_3 = Cq^m$$

$$P_2 = \rho q^2 / 2A^2 0.95^2$$

Index:	Equation:	Criterion: Fraction paras	itic pressure l	oss: Flow rate:
1	qP_2	Max. HP	1/(m+1)	$P_1/C(m+1)$
2	$q\sqrt{P_2}$	Max. jet impact	2/(m+2)	$2P_1/C(m+2)$
3	$q3/2\sqrt{P_2}$	New A	3/(m+3)	$3P_1/C(m+3)$
4	$q^2\sqrt{P_2}$	New B	4/(m+4)	$4P_1/C(m+4)$
5	$\mathfrak{q}^{5/2}\sqrt{P_2}$	New C	5/(m+5)	$5P_1/C(m+5)$

$$A = q\{\rho/2P_2\}^{1/2}/0.95$$

Using the units of: density(kg/l), flowrate (l/min) and pressure (bar), the nozzle area in in² can be obtained by dividing the equation above with 122.4.

$$d_{\rm RKB1} = d_{\rm RKB2} D/(D - \delta h)$$

LOT =
$$2\sigma_a - P_o$$

$$\begin{split} & P_{wf}(\gamma) = P_{wf}(0) + \frac{1}{3} \left(P_0 - P_0^* \right) \sin^2 \gamma \\ & P_{wf}(0) = \left\{ P_{wf}(\gamma) + (\sigma_0 - \frac{1}{2}P_0) \sin^2 \gamma \right\} / \left\{ 1 + \frac{1}{2} \sin^2 \gamma \right\} \\ & \Delta \sigma_a = \Delta P_0 (1 - 2v) / (1 - v) \\ & \Delta P_{wf} = \Delta P_0 (1 - 3v) / (1 - v) \\ & P_{burst} = 2\sigma_{tensile} \ t / D_0 \\ & P_{collapse} = \left\{ 2CE / 1 - v^2 \right\} \left\{ 1 / (D_0 / t - 1)^2 D_0 / t \right\} \\ & \sigma_t / \sigma_{yield} \right\} = 1 / 2 (\sigma_a / \sigma_{yield}) + / - \left\{ 1 - \frac{3}{4} (\sigma_a / \sigma_{yield})^2 \right\}^{1/2} \\ & \rho = (d_p D - 1.03h_w) / (D - h_f - h_w) \\ & d_{wf2} = d_{wf1} \frac{D_1}{D_2} + d_{sw} \frac{D_{w2} - D_{w1}}{D_2} \\ & D_2 = D_1 + (D_{w2} - D_{w1}) + (D_{f2} - D_{f1}) + \left(\frac{d_{ob1}}{d_{ob2}} - 1 \right) \left(D_1 - D_{w1} - D_{f1} \right) \\ & \frac{\Delta^V}{V} = \frac{1}{2} \alpha \Delta T \\ & \Delta P = \left(\frac{-1}{c} \right) \frac{\Delta^V}{V} \\ & I_1 = \sigma_x + \sigma_y + \sigma_z \\ & I_2 = \tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2 - \sigma_x \sigma_y - \sigma_x \sigma_z - \sigma_y \sigma_z \\ & I_3 = \sigma_x (\sigma_y \sigma_z - \tau_{yz}^2) - \tau_{xy} (\tau_{xy} \sigma_z - \tau_{xx} \tau_{yz}) + \tau_{xz} (\tau_{xy} \tau_{yz} - \tau_{zz} \sigma_y) \\ & J_1 = 0 \\ & J_2 = \frac{1}{6} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2 \right] \end{split}$$

Units

1 bar = 14.5 psi =
$$10^5$$
 Pa
1 ft = 0.3048 m = 12 in
1 lb_f = 0.454 kp = 4.45

 $J_3 = I_3 + \frac{1}{3}I_1I_2 + \frac{2}{27}I_1^3$