1 Assignment

In the mandatory exercises for this assignment, you will practice with the modeling of electrical circuits, with obtaining a state-space representation from a given differential equation, and the linearization of a nonlinear system around an equilibrium point. Two optional exercises will help you in understanding the motivation for the course ELE320 - Reguleringsteknikk, as well as to gain more insight into the linearization.

1.1 Modeling of electrical circuits (mandatory)

Question 1.1

Consider the electrical circuit in Fig. 1.1. Determine a model of how the input v(t) affects the output $y(t) = v_{L_1(t)}$. What is the order of this circuit? You should observe a mismatch between the number of dynamical components and the order of the differential equation. Why do you think that this mismatch happens?

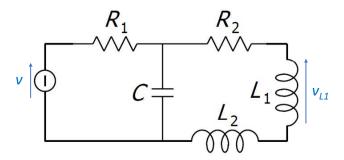


Figure 1.1: Electrical circuit (Exercise 1).

Solution: After defining positive verses for voltages and currents, for example as shown in Fig. 1.2, we can write down the components' equations:

$$\begin{cases} Resistor1: V_1(t) = R_1i_1(t) \\ Resistor2: V_2(t) = R_2i_2(t) \\ Capacitor: i_C(t) = CdV_C(t)/dt \\ Inductor1: V_{L1}(t) = L_1di_2(t)/dt \\ Inductor2: V_{L2}(t) = L_2di_2(t)/dt \end{cases}$$

$$(1.1)$$

and the Kirchhoff's laws:

$$\begin{cases} KVL1: v(t) - V_1(t) - V_C(t) = 0 \\ KVL2: V_C(t) - V_2(t) - V_{L1}(t) - V_{L2}(t) = 0 \\ KCL: i_1(t) - i_2(t) - i_C(t) = 0 \end{cases}$$
(1.2)

By replacing the components' equations (1.1) into (1.2), we obtain:

$$\begin{cases} KVL1: v(t) - R_1 i_1(t) - V_C(t) = 0 \\ KVL2: V_C(t) - R_2 i_2(t) - L_1 d i_2(t) / d t - L_2 d i_2(t) / d t = 0 \\ KCL: i_1(t) - i_2(t) - C d V_C(t) / d t = 0 \end{cases}$$
(1.3)

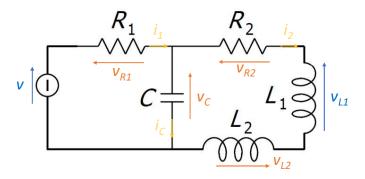


Figure 1.2: Electrical circuit (Exercise 1) - Solution.

We can replace $i_1(t)$ from KCL into KVL1 in (1.3) to obtain:

$$v(t) - R_1 i_2(t) - R_1 C dV_C(t) / dt - V_C(t) = 0 \quad \Rightarrow \quad i_2(t) = \frac{v(t) - C dV_C(t) / dt - V_C(t)}{R_1} \quad (1.4)$$

and replace this expression into KVL2:

$$V_C(t) - \frac{R_2}{R_1}v(t) + \frac{R_2C}{R_1}\frac{dV_C(t)}{dt} + \frac{R_2}{R_1}V_C(t) - \frac{(L_1 + L_2)}{R_1}\left[\frac{dV(t)}{dt} - C\frac{d^2V_C(t)}{dt^2} - \frac{dV_C(t)}{dt}\right] = 0 \quad (1.5)$$

We have obtained the second-order differential equation:

$$\frac{(L_1 + L_2)C}{R_1} \frac{d^2 V_C(t)}{dt^2} + \left[\frac{R_2 C}{R_1} + \frac{(L_1 + L_2)}{R_1} \right] \frac{dV_C(t)}{dt} + \left[1 + \frac{R_2}{R_1} \right] V_C(t) - \frac{R_2}{R_1} v(t) - \frac{(L_1 + L_2)}{R_1} \frac{dv(t)}{dt} = 0$$
(1.6)

The equation for the output of interest is:

$$V_{L_1}(t) = L_1 \frac{di_2(t)}{dt} = \frac{L_1}{R_1} \frac{dv(t)}{dt} - \frac{L_1C}{R_1} \frac{d^2V_C(t)}{dt^2} - \frac{L_1}{R_1} \frac{dV_C(t)}{dt}$$
(1.7)

By looking at the obtained result, we might wonder about why a circuit with three dynamical components (the capacitor C and the inductors L_1 , L_2) is described by a second-order differential equation. This is due to the fact that the series of L_1 and L_2 behaves as a single inductor with inductance $L_1 + L_2$, so we have only two dynamical components: the capacitor C and an inductor with inductance $L_1 + L_2$.

1.2 Obtaining a state-space representation (mandatory)

Question 1.2

The dynamic equation for a pendulum is given by:

$$ml\ddot{\theta}(t) = -mq\sin(\theta(t)) - kl\dot{\theta}(t) \tag{1.8}$$

where l > 0 is the pendulum's length, m > 0 is the mass, k > 0 is a friction parameter and $\theta(t)$ is the angle between the rod of the pendulum and the vertical axis. Choose appropriate state variables and write down the state equation.

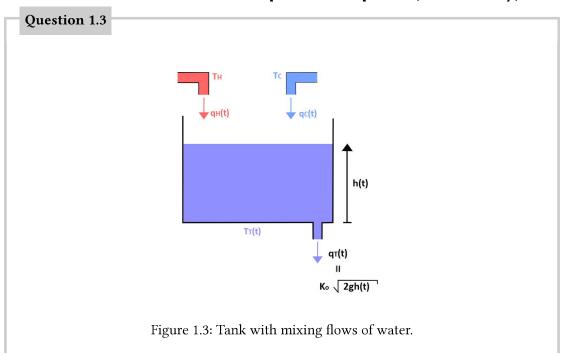
Solution: The variable $\theta(t)$ appears differentiated twice, so we take: $x_1(t) = \dot{\theta}(t)$, $x_2(t) = \dot{\theta}(t)$, from which we obtain:

$$\begin{cases} \dot{x}_1(t) = \dot{\theta}(t) = x_2(t) \\ \dot{x}_2(t) = \ddot{\theta}(t) = -\frac{g}{l}\sin(\theta(t)) - \frac{k}{m}\dot{\theta}(t) = -\frac{g}{l}\sin(x_1(t)) - \frac{k}{m}x_2(t) \end{cases}$$
(1.9)

If we define the state vector $x(t) = [x_1(t), x_2(t)]^T$, we obtain:

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ -\frac{g}{l}\sin(x_1(t)) - \frac{k}{m}x_2(t) \end{bmatrix}$$
 (1.10)

1.3 Linearization around an equilibrium point (mandatory)



We have found out that a tank where a flow $q_H(t)$ of hot water at temperature T_H and a flow $q_C(t)$ of cold water at temperature T_C get mixed (see Fig. 1.3) can be described by a compact state-space representation:

$$\dot{x}(t) = f\left(x(t), u(t)\right) \tag{1.11}$$

with x(t) and u(t) defined as:

$$x(t) = \begin{bmatrix} h(t) \\ T_T(t) \end{bmatrix} \qquad u(t) = \begin{bmatrix} q_C(t) \\ q_H(t) \end{bmatrix}$$
 (1.12)

where h(t) is the water level in the tank and $T_T(t)$ denotes the temperature of the water inside the tank.

The function f(x(t), u(t)) is given by:

$$f(x,u) = \begin{bmatrix} f_1(x,u) \\ f_2(x,u) \end{bmatrix} = \begin{bmatrix} \frac{1}{A_T} \left(u_1 + u_2 - K_o \sqrt{2gx_1} \right) \\ \frac{1}{x_1 A_T} \left(u_1 \left[T_C - x_2 \right] + u_2 \left[T_H - x_2 \right] \right) \end{bmatrix}$$
(1.13)

and the equilibrium point is given by:

$$\bar{u} = \begin{bmatrix} \bar{u}_1 \\ \bar{u}_2 \end{bmatrix} = \begin{bmatrix} \frac{K_o \sqrt{2g\bar{h}} (T_H - \bar{T}_T)}{T_H - T_C} \\ \frac{K_o \sqrt{2g\bar{h}} (\bar{T}_T - T_C)}{T_U - T_C} \end{bmatrix} \quad \Rightarrow \quad \bar{x} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} \bar{h} \\ \bar{T}_T \end{bmatrix}$$
(1.14)

Assuming that $T_C = 20^\circ$, $T_H = 90^\circ$, $A_T = 3 m^2$, $K_o = 0.035 m^2$ and $g = 9.81 m/s^2$ find the linearized systems:

$$\begin{cases}
\begin{bmatrix} h(t) \\ T_{T}(t) \end{bmatrix} = \begin{bmatrix} \bar{h} \\ \bar{T}_{T} \end{bmatrix} + \begin{bmatrix} \delta h(t) \\ \delta T_{T}(t) \end{bmatrix}, \begin{bmatrix} q_{C}(t) \\ q_{H}(t) \end{bmatrix} = \begin{bmatrix} \bar{q}_{C} \\ \bar{q}_{H} \end{bmatrix} + \begin{bmatrix} \delta q_{C}(t) \\ \delta q_{H}(t) \end{bmatrix}, \begin{bmatrix} h(0) \\ T_{T}(0) \end{bmatrix} = \begin{bmatrix} \bar{h} \\ \bar{T}_{T} \end{bmatrix} + \begin{bmatrix} \delta h(0) \\ \delta T_{T}(0) \end{bmatrix} \\
\begin{bmatrix} \delta \dot{h}(t) \\ \delta \dot{T}_{T}(t) \end{bmatrix} \approx A \begin{bmatrix} \delta h(t) \\ \delta T_{T}(t) \end{bmatrix} + B \begin{bmatrix} \delta q_{C}(t) \\ \delta q_{H}(t) \end{bmatrix}
\end{cases}$$
(1.15)

that correspond to the following equilibrium points:

- $\left[\bar{h}, \bar{T}_T\right] = \left[1 \, m, 30^\circ\right]$
- $[\bar{h}, \bar{T}_T] = [1 \, m, 70^{\circ}]$
- $[\bar{h}, \bar{T}_T] = [4 \, m, 30^{\circ}]$
- $[\bar{h}, \bar{T}_T] = [4 \, m, 70^{\circ}]$

(Note: You should replace appropriate numbers/matrices in \bar{h} , \bar{T}_T , \bar{q}_C , \bar{q}_H , A, B. You could write a short MATLAB script that helps you with the calculations.)

Solution: Let's linearize the nonlinear system around the equilibrium point. To do so, we need to calculate \bar{u}_1 and \bar{u}_2 using Eq. (1.14) and the necessary partial derivatives to fill the matrices A

and B. We can calculate the following:

$$\frac{\partial f_1}{\partial x_1} = \frac{\partial}{\partial x_1} \left\{ \frac{1}{A_T} \left(u_1 + u_2 - K_o \sqrt{2gx_1} \right) \right\} = -\frac{K_o}{A_T} \frac{\partial}{\partial x_1} \left\{ \sqrt{2gx_1} \right\}$$

$$= -\frac{K_o}{A_T} \frac{1}{2\sqrt{2gx_1}} \frac{\partial}{\partial x_1} \left\{ 2gx_1 \right\} = -\frac{K_o}{A_T} \frac{g}{\sqrt{2gx_1}} = -\frac{K_o}{A_T} \sqrt{\frac{g}{2x_1}}$$

$$\frac{\partial f_1}{\partial x_2} = \frac{\partial}{\partial x_2} \left\{ \frac{1}{A_T} \left(u_1 + u_2 - K_o \sqrt{2gx_1} \right) \right\} = 0$$

$$\frac{\partial f_1}{\partial u_1} = \frac{\partial}{\partial u_1} \left\{ \frac{1}{A_T} \left(u_1 + u_2 - K_o \sqrt{2gx_1} \right) \right\} = \frac{1}{A_T}$$

$$\frac{\partial f_1}{\partial u_2} = \frac{\partial}{\partial u_2} \left\{ \frac{1}{A_T} \left(u_1 + u_2 - K_o \sqrt{2gx_1} \right) \right\} = \frac{1}{A_T}$$

$$\begin{split} \frac{\partial f_2}{\partial x_1} &= \frac{\partial}{\partial x_1} \left\{ \frac{1}{x_1 A_T} \left(u_1 \left[T_C - x_2 \right] + u_2 \left[T_H - x_2 \right] \right) \right\} = \frac{1}{A_T} \left(u_1 \left[T_C - x_2 \right] + u_2 \left[T_H - x_2 \right] \right) \frac{\partial}{\partial x_1} \left\{ \frac{1}{x_1} \right\} \\ &= -\frac{1}{A_T} \left(u_1 \left[T_C - x_2 \right] + u_2 \left[T_H - x_2 \right] \right) \frac{1}{x_1^2} \end{split}$$

$$\begin{split} \frac{\partial f_2}{\partial x_2} &= \frac{\partial}{\partial x_2} \left\{ \frac{1}{x_1 A_T} \left(u_1 \left[T_C - x_2 \right] + u_2 \left[T_H - x_2 \right] \right) \right\} = \frac{1}{x_1 A_T} \left(u_1 \frac{\partial}{\partial x_2} \left\{ T_C - x_2 \right\} + u_2 \frac{\partial}{\partial x_2} \left\{ T_H - x_2 \right\} \right) \\ &= -\frac{1}{x_1 A_T} \left(u_1 + u_2 \right) \\ &\qquad \qquad \frac{\partial f_2}{\partial u_1} &= \frac{\partial}{\partial u_1} \left\{ \frac{1}{x_1 A_T} \left(u_1 \left[T_C - x_2 \right] + u_2 \left[T_H - x_2 \right] \right) \right\} = \frac{1}{x_1 A_T} \left(T_C - x_2 \right) \\ &\qquad \qquad \frac{\partial f_2}{\partial u_2} &= \frac{\partial}{\partial u_2} \left\{ \frac{1}{x_1 A_T} \left(u_1 \left[T_C - x_2 \right] + u_2 \left[T_H - x_2 \right] \right) \right\} = \frac{1}{x_1 A_T} \left(T_H - x_2 \right) \end{split}$$

In order to obtain the linearized systems, we need to evaluate the partial derivatives at the equilibrium points. Thus, we obtain the following linearized systems:

$$\begin{cases} \begin{bmatrix} h(t) \\ T_T(t) \end{bmatrix} = \begin{bmatrix} 1 \\ 30 \end{bmatrix} + \begin{bmatrix} \delta h(t) \\ \delta T_T(t) \end{bmatrix}, \begin{bmatrix} q_C(t) \\ q_H(t) \end{bmatrix} = \begin{bmatrix} 0.1329 \\ 0.0221 \end{bmatrix} + \begin{bmatrix} \delta q_C(t) \\ \delta q_H(t) \end{bmatrix}, \begin{bmatrix} h(0) \\ T_T(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 30 \end{bmatrix} + \begin{bmatrix} \delta h(0) \\ \delta T_T(0) \end{bmatrix} \\ \begin{bmatrix} \delta \dot{h}(t) \\ \delta \dot{T}_T(t) \end{bmatrix} \approx \begin{bmatrix} -0.0258 & 0 \\ 0 & -0.0517 \end{bmatrix} \begin{bmatrix} \delta h(t) \\ \delta T_T(t) \end{bmatrix} + \begin{bmatrix} 0.3333 & 0.3333 \\ -3.333 & 20.0000 \end{bmatrix} \begin{bmatrix} \delta q_C(t) \\ \delta q_H(t) \end{bmatrix} \\ \begin{bmatrix} h(t) \\ T_T(t) \end{bmatrix} = \begin{bmatrix} 1 \\ 70 \end{bmatrix} + \begin{bmatrix} \delta h(t) \\ \delta T_T(t) \end{bmatrix}, \begin{bmatrix} q_C(t) \\ q_H(t) \end{bmatrix} = \begin{bmatrix} 0.0443 \\ 0.1107 \end{bmatrix} + \begin{bmatrix} \delta q_C(t) \\ \delta q_H(t) \end{bmatrix}, \begin{bmatrix} h(0) \\ T_T(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 70 \end{bmatrix} + \begin{bmatrix} \delta h(0) \\ \delta T_T(0) \end{bmatrix} \\ \begin{bmatrix} \delta \dot{h}(t) \\ \delta \dot{T}_T(t) \end{bmatrix} \approx \begin{bmatrix} -0.0258 & 0 \\ 0 & -0.0517 \end{bmatrix} \begin{bmatrix} \delta h(t) \\ \delta T_T(t) \end{bmatrix} + \begin{bmatrix} 0.3333 & 0.3333 \\ -16.6667 & 6.6667 \end{bmatrix} \begin{bmatrix} \delta q_C(t) \\ \delta q_H(t) \end{bmatrix}$$

$$\begin{cases} \begin{bmatrix} h(t) \\ T_T(t) \end{bmatrix} = \begin{bmatrix} 4 \\ 30 \end{bmatrix} + \begin{bmatrix} \delta h(t) \\ \delta T_T(t) \end{bmatrix}, \begin{bmatrix} q_C(t) \\ q_H(t) \end{bmatrix} = \begin{bmatrix} 0.2658 \\ 0.0443 \end{bmatrix} + \begin{bmatrix} \delta q_C(t) \\ \delta q_H(t) \end{bmatrix}, \begin{bmatrix} h(0) \\ T_T(0) \end{bmatrix} = \begin{bmatrix} 4 \\ 30 \end{bmatrix} + \begin{bmatrix} \delta h(0) \\ \delta T_T(0) \end{bmatrix} \\ \begin{bmatrix} \delta \dot{h}(t) \\ \delta \dot{T}_T(t) \end{bmatrix} \approx \begin{bmatrix} -0.0129 & 0 \\ 0 & -0.0258 \end{bmatrix} \begin{bmatrix} \delta h(t) \\ \delta T_T(t) \end{bmatrix} + \begin{bmatrix} 0.33333 & 0.3333 \\ -0.8333 & 5.0000 \end{bmatrix} \begin{bmatrix} \delta q_C(t) \\ \delta q_H(t) \end{bmatrix} \\ \begin{bmatrix} h(t) \\ T_T(t) \end{bmatrix} = \begin{bmatrix} 4 \\ 70 \end{bmatrix} + \begin{bmatrix} \delta h(t) \\ \delta T_T(t) \end{bmatrix}, \begin{bmatrix} q_C(t) \\ q_H(t) \end{bmatrix} = \begin{bmatrix} 0.0886 \\ 0.2215 \end{bmatrix} + \begin{bmatrix} \delta q_C(t) \\ \delta q_H(t) \end{bmatrix}, \begin{bmatrix} h(0) \\ T_T(0) \end{bmatrix} = \begin{bmatrix} 4 \\ 70 \end{bmatrix} + \begin{bmatrix} \delta h(0) \\ \delta T_T(0) \end{bmatrix} \\ \begin{bmatrix} \delta \dot{h}(t) \\ \delta \dot{T}_T(t) \end{bmatrix} \approx \begin{bmatrix} -0.0129 & 0 \\ 0 & -0.0258 \end{bmatrix} \begin{bmatrix} \delta h(t) \\ \delta T_T(t) \end{bmatrix} + \begin{bmatrix} 0.3333 & 0.3333 \\ -4.1667 & 1.6667 \end{bmatrix} \begin{bmatrix} \delta q_C(t) \\ \delta q_H(t) \end{bmatrix}$$