1 Assignment

In the mandatory exercises for this assignment, you will practice with the modeling of electrical
circuits, with obtaining a state-space representation from a given differential equation, and the
linearization of a nonlinear system around an equilibrium point. Two optional exercises will
help you in understanding the motivation for the course ELE320 - Reguleringsteknikk, as well
as to gain more insight into the linearization.

1.1 Modeling of electrical circuits (mandatory)

Question 1.1

Consider the electrical circuit in Fig. 1.1. Determine a model of how the input o(¢) affects
the output y(t) = vy, ;). What is the order of this circuit? You should observe a mismatch
between the number of dynamical components and the order of the differential equation.
Why do you think that this mismatch happens?

Figure 1.1: Electrical circuit (Exercise 1).

Solution: After defining positive verses for voltages and currents, for example as shown in Fig.
1.2, we can write down the components’ equations:

Resistor1 : Vi(t) = Ryir (1)

Resistor2 : Vo(t) = Ryiy (1)

Capacitor : ic(t) = CdVe(t)/dt (1.1)
Inductorl : Vi1(t) = Lidiy(t)/dt

Inductor2 : Vis(t) = Lodis(t)/dt



and the Kirchhoff’s laws:

KVL1:0(t)—Vi(t) = Ve(t) =0
KVL2:Ve(t) = Vo(t) — Vi (t) — Via(t) =0 (1.2)
KCL : iy (t) —ip(t) —ic(t) =0

By replacing the components’ equations (1.1) into (1.2), we obtain:

KVL1:0(t) —Ryi (t) = Ve(t) =0
KVL2:Ve(t) — Ryig(t) — Ldia(t) /dt — Lodis(t) /dt = 0 (1.3)
KCL : iy (t) —ip(t) = CdVe(t)/dt =0

Figure 1.2: Electrical circuit (Exercise 1) - Solution.

We can replace i; (t) from KCL into KVL1 in (1.3) to obtain:
o(t) = CdVe(t)/dt — Ve(t)

v(t) = Ryiz(t) = RiCAVe(t)/dt = Ve(t) =0 = ix(t) = R (1.4)
1
and replace this expression into KVL2:
RC dVC(t) (Ly+ Ly) [dV(t) _d*Ve(t)  dVe(t)
Ve(t) — —=— V t) — -C — =0 (1.5
c(®) () Rl Cdt R1 c(®) R dt dt? dt (15)

We have obtained the second-order differential equation:

(L1 + Lp)C d*Ve(t) L RC L (L1 + Ly) ch(f) Ve (t)—— (1) - (L1 + Lp) do(t) _
R dt? R R dt R Tdt
(1.6)
The equation for the output of interest is:
diy(t)  Lydo(t) LiCd*Ve(t) LydVe(t
U () = 1,0 Ldo®)  LCdVew) | L dve(n w

dt R, dt R, dt? R, dt

By looking at the obtained result, we might wonder about why a circuit with three dynamical
components (the capacitor C and the inductors L;, L,) is described by a second-order differential
equation. This is due to the fact that the series of L; and L, behaves as a single inductor with
inductance L; + Ly, so we have only two dynamical components: the capacitor C and an inductor
with inductance L; + L.



1.2 Obtaining a state-space representation (mandatory)

Question 1.2

The dynamic equation for a pendulum is given by:
mlf(t) = —mgsin (6(t)) — k16(t) (1.8)

where [ > 0 is the pendulum’s length, m > 0 is the mass, k > 0 is a friction parameter
and 0(t) is the angle between the rod of the pendulum and the vertical axis. Choose
appropriate state variables and write down the state equation.

Solution: The variable 6(t) appears differentiated twice, so we take: x; (t) = 6(t), x5(t) = 8(¢),
from which we obtain:

i1 (1) = 6(2) = x5(2) (19)
(1) = (1) = 9 sin (0(1)) ~ £6(1) = 9 sin (x1(1)) ~ Exa(1) |
If we define the state vector x(£) = [x1(£), x2(£)]*, we obtain:
() = % (1) (1.10)

—4sin (x1(1)) = %xz(t)

1.3 Linearization around an equilibrium point (mandatory)

Question 1.3
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Figure 1.3: Tank with mixing flows of water.



We have found out that a tank where a flow g (t) of hot water at temperature Ty and a
flow gc(t) of cold water at temperature Te get mixed (see Fig. 1.3) can be described by a
compact state-space representation:

x(t) = f (x(2), u(t)) (1.11)
with x(t) and u(t) defined as:
x(t) = [7}‘;((?)] u(t) = 2;8 (1.12)

where h(t) is the water level in the tank and Tr(t) denotes the temperature of the water
inside the tank.

The function f (x(t), u(t)) is given by:

filx, u)] [ ﬁ (u1 +up — Kov/29x1) ]
u) = = 1.13
Jeew [fz(x, w| 7 |2 (w0 [Te = xo] +uz [Ty = x2]) (L.13)
and the equilibrium point is given by:
KoV\2gh (TH Tr) _ _
i = TH Ic X = X1 = fl
u [ ] KOW(TT -Tc) - J_Cz] [TT} (1.14)

Tu—- TC

Assuming that Te = 20°, Ty = 90°, A7 = 3m?, K, = 0.035m? and g = 9.81 m/s? find the

linearized systems:
[h(t)}z[ﬁ]+[5h<t> CIc(t)]: x|, 561c(t)] [h<o>]:[ﬁ]+[5h<o>
Ir(t)]  |Tr]  [8Tr ()] [qu(2) 5qu()|” [Tr(0)]  [Tr| [6Tr(0)
(1.15)

qo

o] = [smo | 2 st
that correspond to the following equilibrium points:
« [ATr] = [1m,30°]
- [ATr| = [1m,70°]
- [ATr] = [4m,30°]
« [ATr| = [4m,70°]

(Note: You should replace appropriate numbers/matrices in h, Tr, Gc, Gu, A, B. You could
write a short MATLAB script that helps you with the calculations.)

Solution: Let’s linearize the nonlinear system around the equilibrium point. To do so, we need
to calculate #; and u; using Eq. (1.14) and the necessary partial derivatives to fill the matrices A



and B. We can calculate the following:
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In order to obtain the linearized systems, we need to evaluate the partial derivatives at the
equilibrium points. Thus, we obtain the following linearized systems:

[h(t)| |1 Sh(t) | [qc(t)] _[0.1329] = [8qc(t)] [R(O)] |1 5h(0)
()| T [30]*[&(0 ’[qH(t)] = [0.0221]+ Squ(t) ’[TT(O)] - [30]+[5TT(0)
[ Sh(t) | _ [-0.0258 0 Sh(t) 03333 0.3333 | [8qc(t)
»5T'T(t)]~[ 0 —0.0517 5TT(t)] [—3.3333 20.0000| | 5 (t)

(h(t) | _[1] . [6h()] [qc(D] _[0.0443] . [Sqe(v)] [R()] _[1] . [8R(0)
»TT(t)] B [70] " [5TT(t)] : [qH(t)] = [0.1107] * [5qH(t)] : [TT(O)] = [70] * [5TT(0)]
[ Sh(t) | _ [-0.0258 0 Sh(t) 03333 0.3333] [8qc(t)
»5TT(t)] ~ [ 0 —0.0517] [5TT(t)] " [—16.6667 6.6667] [5qH(t)]




5qc(t)

[ h(t) | [4]+[5h(t)

[h(O)

|4 5h(0)
EN STr(0)

’ [qc(t)] B [0.2658] N

| Tr(t)| |30 STr(t) |’ [qu(t) 0.0443 Squ(t) | | Tr(0)
[ SR (t) _ |-0.0129 0 Sh(t) 0.3333  0.3333| [5qc (1)
5Tr ()] ~ 0 —0.0258 | [6Tr (1) —0.8333 5.0000| |Sqy(t)

(h(t) ] _[4]  [on(t)] [qc(®)] _[0.0886]  [dqc(t)] [R(0)] [4] . [8h(0)
»TT(t)] B [70] " [5TT(t)] ’ [qH(t)] = [0.2215] * [5qH(t)] ’ [TT(O) - [70] * [5TT(O)]
[Sh(1) ] _[-0.0129 0 Sh(t)] [ 03333  0.3333] [Sqc(t)
»5TT(t)]N[ 0 —0.0258] [5TT(t)] [—4.1667 1.6667] [5qH(t)]




