2 Assignment

In the mandatory exercises for this assignment, you will practice with the computation of the
state and output responses for LTI systems. An optional exercise will help you in gaining more
insight into the relationship between the eigenvalues of the state matrix A and the behavior of
an LTI system.

2.1 Computation of the state and output responses (mandatory)
Question 2.1

NOTE! You do not have to do any linearization in this exercise because the system
is already linear! Consider the following system:

()| =2 1| [x(t) 0
L’c;(t)] B [ 2 -3 x;(t) * H u(t) (2.1)
_ x1(2)
y(t) = [1 2] [x;(t)] (2.2)

Determine the state and output responses x(¢) and y(t) corresponding to an initial condi-
tion x(0) = [1 O]T and an input signal u(¢) = 1(t), where 1(¢) denotes the unit step:

0 ift<0
1) :{ 1 ift =0 @3

Open the file hw2a. s1x to compare the simulated output response of the state-space model
with the calculated output response. You need to insert suitable values inside the gain and
constant blocks, according to the solution that you calculated. Note: Some calculations can
be quite long and tedious. You can use some computational aid to help you in the process, for
example WolframAlpha. Please explain in detail where and how you used computational aid.



2.2 Computation of the state response for the pendulum

Question 2.2

We have seen that the equation of a pendulum is given by:
ml*0(t) = f(t)l — mgl sin O(t) (2.4)

where m is the mass, [ is the length of the rod, g denotes the gravity acceleration, 6(t)
denotes the angle with respect to the vertical axis, and f(t) is the force acting on the mass
in the tangential direction. Let’s consider m = 1kg, [ = 1m and g = 10m/ s and let’s
choose state variables x1(¢) = 0(t), x,(¢) = 6(t) with input variable u(¢) = f(¢):

{ X1(t) = x(t)

%o(t) = —10sinx; (t) + u(t) (2.5)

We can linearize the pendulum around different operating point, and then analyze what
happens if an initial condition different from the equilibrium is considered (state response).
In this exercise, you should compute the state responses x;(t) corresponding to the initial
deviation §x(0) = [7/6 0] " for the equilibrium state corresponding to the constant input

7 =mg/2=5N:
%y = [”({6] (2.6)

NOTE! In this exercise du(t) = 0, since u(t) = &i. This means that the effect of the
input is embedded into the equilibrium state %;, and you do not need to compute
the convolution integral fot eA=7 Bdr (since it will be equal to 0).



2.3 State-space response (optional)

In this exercise, we are going to use the file HWZ2statespace.exe, which contains a ready-to-use
simulator developed by UNED. The app is in Spanish, so you are referred to Fig. 2.1 for an
English translation.
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Figure 2.1: Software state-space.

We will use the simulator to get further insight about how the eigenvalues of a system are
related to the time response. The simulated system is a second-order system with the following
state equation:

o Jo1 0
x(t) = [0 O] x(t) + 1 u(t) (2.7)
The input signal is chosen as’:
u(t) = - [Ki K| x(t) (2.8)
The interconnection of (2.7)-(2.8) leads to a system that behaves according to:
o oo
x(t) = l_Kl K, x(t) (2.9)

Hence, it is clear that the eigenvalues of the state matrix in (2.9) would change according to the
values of K; and K.

IThis is called state-feedback control law, you could learn more about it in more advanced courses



Question 2.3

Change the values of K; and K; (negative values can be used) and see how the closed-loop
eigenvalues of the state matrix in (2.9) (blue triangles in the pole-zero representation) are
related to the states’ free response in the right part of the software. Alternatively, you can
switch from the Analysis to the Control mode so that you can move directly the eigenvalues
on the pole-zero representation (green squares). What happens when the eigenvalues
are moved towards the left? What happens when the imaginary part is increased? What
happens when they are moved towards the right, possibly crossing the imaginary axis so
that their real part becomes positive?



