3 Assignment

3 Assignment

In this assignment, which comprises only mandatory exercises, you will practice with using the
Laplace transform and the transfer function in order to compute the output response of an LTI
system.

You will find the following Laplace transforms useful:

L{e"1(1)} = ﬁ L{sinw1(0) = 7
1

(s —a)?

L{cos(wt)1(t)} = ﬁ

w2

L{1(t)} = % L{te"1(t)} = L{%f(t)} = sF(s) = f(0)
3.1 Laplace transform (mandatory)

Question 3.1

Given the following differential equation:

g(t) = =3y(t) +u(t) (3.1)

with initial value y(0) = 5. Assume that the input variable u(t) is a step signal of amplitude
2 attime t = 0.

1. Compute the corresponding output response y(t) using the Laplace transform.

2. Calculate the steady-state value of y(t) (the final value of y(t) when t — o0) using
the Final Value Theorem. Then, calculate the steady-state value yg using the y(t)
computed at point 1. Are the two computed values the same?

3. According to the time-derivative property of the Laplace transform, L{y(t)} =
sY(s) — yo. Under the assumption that y, = 0, we obtain the following from (3.1):

sY(s) = =3Y(s) + U(s) = Y(s) = H(s)U(s) = #U(s) (3.2)
where H(s) is the transfer function. Using MATLAB functions tf and step, write
a code that plots the step response of (3.2). Then, using the Simulink blocks Step,
Transfer Fcn and Scope, perform a simulation of the step response. Are the
obtained signals y(t) the same in both cases? Compare them with the expression of
y(t) that you obtained at point 1 of this exercise, and discuss similarities/differences.
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Solution: 1. The Laplace transform of (3.1) is given by:
sY(s) —y(0) = =3Y(s) + U(s)

Since u(t) is a step signal of amplitude 2, we have:
2
U(s) =-

$

We can compute:

(s+3)Y(s) =y(0)+U(s) = (s+3)Y(s)=5+ %

which leads to:
55+2

Y(s) = s(s+3)

We can perform the partial fraction decomposition:

r r2
Y(s) = —+ —
() s+3
with:
5s+2 2
= Y _n = = -
ri = [Y(s)s]s=p s+3 |, 3
55+ 2 13
ro=[Y(s)(s+3)]so3 = ==
s==3

So, we obtain:
2/3 13/3
Y(s) = 2/3 + 13/3
S s+3

2. The final value theorem states that:
55+ 2 2

f (0 = g ¥ 9 = iy 2 = =

_ 5s+2

= oyt = (% + Lje—”) 1(t)

On the other hand, taking into account the previously computed solution:

. . 2 13 _ 2
Yo = Jlim y(t) = lim (5 tye ) =3

so the steady-state values calculated in these two different ways are the same.

3. The MATLAB code that plots the step response of (3.2) is the following:

mytf = tf(1,[1 31);
step(mytf)



which returns the plot in Fig. 3.1. The Simulink implementation is shown in Fig. 3.2, and the
results are illustrated in Fig. 3.3. The plots are similar, the only relevant differences are the
lengths of the simulations and the time at which the step induces the response (in the Simulink
case, the step response starts at time 1s - you can open the Simulink block Step to understand
why this happens). The comparison with the solution of point 1 y(t) = (% + %e‘gt) 1(1),
implemented using the following code:

T=20:0.01:10;
Y = 2/3+13/3%exp(-3%T);
plot(T,Y); xlabel('Time (seconds)'); ylabel('Amplitude'); title('Response y(t)')

whose result is given in Fig. 3.4 shows a very different result. This is due to two facts: 1) the
initial condition, which is different from 0; 2) the step signal introduced as input at point 1
of this exercise has amplitude equal to 2. It can be seen that after a certain time, the part of
the response due to the initial condition vanishes (this is due to stability, we will discuss this
concept later in the course), and the response converges to a value which is exactly the double
of the steady-state value in Figs. 3.1-3.3 (this is due to linearity).
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Figure 3.1: Step response of (3.2) (MATLAB).
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Figure 3.2: Implementation of (3.2) (SIMULINK).

Figure 3.3: Step response of (3.2) (SIMULINK).
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Figure 3.4: Response y(t) = (% + 2e7*) 1(1).



3.2 Transfer function (mandatory)

Question 3.2

Consider the mass-spring-damper system in Fig. 3.5, where y denotes the position, F is
the applied force, D is the damping coefficient, K is the spring constant. By assuming
that the damping force F; is proportional to the velocity, and that the spring force F;
is proportional to the position of the mass, and such that F; = 0 when y = 0, then the
following equation is obtained from the force balance:

mij(t) = F(t) — Dy(t) — Ky(t) (3.3)

Calculate the transfer function from the force F to the position y.
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Figure 3.5: Mass-spring-damper system.

Solution: The transfer function from F(s) to Y(s) is given by:

3.3 Output response using the transfer function (mandatory)

Question 3.3

1. Consider an LTI system described by the transfer function H(s) = ﬁ Compute

the output response y; (t) which corresponds to an input signal u; (t) = sin(wt)1(#).

2. Imagine that the transfer function had been H(s) = @ instead. Which term in
y1(t) could you change instantaneously without performing any calculation, and
how? Note: Of course, in order to get the correct entire expression for y(t) you would
still need to perform again all the calculations, you can do this as an optional exercise

for familiarizing yourself further with the involved calculations.

3. Consider an LTI system described by the transfer function H(s) = & Compute



the output response y,(t) which corresponds to the input signal u,(t) = 1(t).

Solution: 1. We have: "

(s +2)(s2 + w?)

We can perform the partial fraction expansion of the above expression as follows:

Yi(s) = H(s)Ui(s) =

r ra r;

Yi(s) =

+ . + .
s+2 s—jo s+ jw
where the residues ry, ry, r; can be computed as:

)
(52 + w?)

w

ri=[Yi(s)(s+2)]s-p = T2+ 4

s=—2

ra = [Yl(s)(s - jw)]s:jw =

© ] 3 1)
(s+2)(s+jw) s=jo 2+ jw)2jw

#] e
(s+2)(s = jo) [ ;e j,, (2~ jo)(-2jo)

L_l{ r1 }=£_1{ o 1 } ® e 21(1)

s+2 W’ +4s+2|  wi+4

r; = [Y(S)(3+jw)]s:—jw =

Then:

In order to compute the inverse Laplace transform of the remaining term, it is useful to rewrite
r in the form pe/?. We can write:

B 02— jw)(-2jw) B 0 (0 +2j) _ lo+2j
24 jw)(2-jo)2jo(=2jw) 40 (0?+4) 202+4

r2

SO:

| 1Vo?+4
=|r| = - —
Pl = ey

2
¢ = arg(ry) = —m + arctan —
w
from which we obtain:

7‘2 r2 2

5 Vo? +4
-1

+ =2 t+9)1(t) = ——
£ {s—ja) s+jw} peos(wt +¢)1(1) w?+4

2
cos(wt — 7 + arctan —)1(t)
1)

Then, we can conclude that:

(t) O g2y '+ 4 t — 7+ arctan > 1(1)
= e COS | wl — T + arctan —
u w?+4 w?+4 1)

2. The term e~ would change into e~ due to the pole of the transfer function H(s) being
changed from s = -2 to s = —4.



3. In this case, we have:
s—1

s(s+1)2

which can be rewritten using the partial fraction expansion as follows:

Y2(s) = H(s)Uz(s) =

51 1 r2
Yo(s) = —+ —— + —
2(s) s (s+1)2 s+1

where the residues ry, o1, 122 can be computed as:

(s-1)

= 068l = | 5

s=0

P = [Ya(s)(s+1)?] __, = [s 5 1] -
s=—1

d d [s-1 !
2=\ s {Ta(s) (s + 1)2}]5:—1 ) [g {s s }L:—l ) [S_Z]F—l -

Then we get:
y2(t) = (-1+2te” +e7) 1(2)



