4 Assignment

4 Assignment

In the mandatory exercises of this assignment, you will practice with the relationship between
the state-space and the transfer function. You will also get a deeper understanding of BIBO
stability and internal stability. Finally, you will practice with the simplification of a block
diagram.

4.1 From state-space to transfer functions (mandatory)

Question 4.1

Obtain the transfer function of the system defined by:

%1 (1) = =x1(t) + x2(t)
X (t) = —x2(t) +x3(1)
x3(t) = —2x3(t) + u(t)
y(t) = x1(1)

(4.1)

Discuss about the external (BIBO) stability and internal stability of this system.

Solution: The system (4.1) can be put into a compact matrix form by defining the following

matrices:
-1 1 0
A=[0 -1 1 B=10 c=1[1 0 0 D=0
0 0 -2 1

Hence, we can calculate the transfer function H(s) as follows:
H(s)=C(sI-A)'B+D

The matrix (sI — A)™! is given by

-1 1 1 1

1 s+1 -1 0 S+ (s+11)2 (s+1)i(3+2)
(sI-A)"=[ 0 s+1 -1 = ¢l (s+)(s+2)
0 0 s+2 0 0 HLZ

1In WolframAlpha: ino({{s + 1,-1,0},{0,s + 1, =1}, {0,0,s + 2}}).
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so that:
1 1 1

S

51 (512 (s+1)%(s+2) 1
His)=[1 0 o]|0 L ——=||0l=——
s+1 (s+1) (s+2) (S + 1)2(3 + 2)
o o & b

The external stability (BIBO) can be assessed by looking at the poles of the transfer function.
The computed H(s) has a double pole in —1 and another pole in —2. All the poles are in the
left half of the complex plane Re(s) < 0, so the system is BIBO stable. The internal stability is
assessed by looking at the eigenvalues of A, which are the solutions of det(sI — A) = 0:

det(sI—A) = (s+1)*(s+2) =0

which shows that A has a double eigenvalue in —1 and an eigenvalue in —2 (note that they
correspond to the poles of H(s): there is no zero-pole cancellation). Since all the eigenvalues
are in the left half of the complex plane Re(1) < 0, the system is asymptotically stable.

Question 4.2

Obtain the transfer function of the system defined by:

x1(t) = =39x1 () + 84x5(t) + 7u(t)
xo(t) = —18x1(t) + 39x2(¢t) + 3u(t) (4.2)
y(t) = x1(t) — 2xa(t)

Discuss about the external (BIBO) stability and internal stability of this system.

Solution: The system (4.2) can be put into a compact matrix representation with:

A:[_39 84] B:H C=[1 -2] D=0

—-18 39 3
so that: o
(sT— A)! = s +39 —84] B F‘fg S;‘fg]
- = =[Z18  s+39
18 s—39 & o5
and:

5 M7 s-3 1
T s2-9  s+3

2 2_
H(s)=[1 -2] [% % 3
The transfer function H(s) has a single pole in —3, which means that it is BIBO stable. However,
the eigenvalues of the matrix A are —3 and 3 (the pole in 3 was canceled by the zero in 3) which
means that the system is unstable when the behavior under perturbations of the initial state is
considered.



4.2 Asymptotic and BIBO stability (mandatory)

Question 4.3

Consider the system given by the following equations:

{ %1 (1) = x2(t) — x2(2)*x1 ()

%o (t) = =5x1(t) — 2x2(2) (4.3)

(a) Linearize the system about the equilibrium point (%1, %;) = (0,0) and discuss the
internal stability of the linearized system.

(b) Consider a system described by the differential equation ¥(¢) + px(t) + gx(t) = u(t).
For which values of the parameters p and q is the system BIBO stable?

(c) Plot the impulse response of the system for p = 2 and g = 5 (you can use MATLAB
functions tf and impulse to do this).

(d) Now let p = 2 and g = —5. Is the system BIBO stable? Plot the impulse response.

Solution: (a) The linearized system is given by:

x(t) = 6x(t), x(0) = 5x(0)

ofi  ofi 2
. v D —X. 1- 2x1x2 0 1
S5x(t) ~ l‘gxz o . ox(t) = _52 _2 —0 ox(t) = [_5 g dx(t)
axl 3)(2 X1 =x1 _
X2 = X2 x2=0

The eigenvalues of the state matrix are computed as:

s -1

det(sI — A) = det ([5 s 49

)=32+23+5:0

The matrix A has a pair of complex conjugate eigenvalues in —1 + 2j, which are in the left half
of the complex plane, so the linearized system is asymptotically stable (as a consequence, the
origin of the state-space is an asymptotically stable equilibrium point).

(b) The transfer function corresponding to the differential equation is:

1

H(s):s2+ps+q

The poles of H(s) are in:

—p£p*—4q
2

The system is BIBO stable as long as the real parts of the poles is strictly negative. If p < 0, this
condition is not satisfied. It p > 0, then what must happen is that:

—p+pi-4g<0 = p2—4g<p = pi-dg<p’® = g>0



Hence, the system is BIBO stable as long as p > 0 and g > 0.
(c) The impulse response can be plotted with the command impulse(tf(1,[1 2 51)) (see Fig.

4.1).
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Figure 4.1: Impulse response with p =2 and g = 5.

(d) When p = 2 and q = -5, the system is not BIBO stable. This is clearly shown by the impulse

response plotted with impulse(tf(1,[1 2 -5])) and shown in Fig. 4.2.
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Figure 4.2: Impulse response with p = 2 and ¢ = —5.



4.3 Block diagrams (mandatory)

Question 4.4

Simplify the block diagram shown in the figure, so that you obtain the equivalent transfer
function Hgy(s) from R(s) to Y(s). Using Simulink, show that the responses obtained
using the original block diagram and the simplified block diagrams are equivalent (you can
use any type of input signal to show the equivalence). What are the static gain Hpy (0), the
zeros and the poles of Hgy(s)? What type of exponential/trigonometric functions would
we find in the step response of Hry (s)? Is Hry(s) a BIBO stable system? What can we say
about the internal stability of the underlying state-space representation?
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Figure 4.3: Block diagram of the system.
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Solution: The first step to solve this exercise is to identify interconnections among series, parallel
and negative-feedback. As shown in Fig. 4.4, there are a negative-feedback interconnection
(cyan color) and a series interconnection (green color).
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Figure 4.4: Block diagram of the system (negative-feedback and series interconnections).

By recalling that the equivalent transfer function of a feedback interconnection H,(s) is given
by:

Hai(s)
1+ Hg (s)Hyi(s)
where Hy(s) is the transfer function on the direct loop and Hg;(s) is the transfer function on the
feedback loop, whereas the equivalent transfer function of a feedback interconnection Hs,(s) is
given by:

an(s) =

Hge(s) = Ha(s)Hi(s)



where Hj(s) is the first transfer function and H,(s) is the second transfer function in the series
interconnection, then we can calculate:

2 2
H (s) = 53 _ 53 _ 2s+4
cyani>) — 2 17 (s+3)(s+2)+2 g2
l+$+3$+2 W s“+55+38
1 3 3

H s) = =
green(s) s+1s+5 s24+6s5s+5

So, we can simplify the block diagram as shown in Fig. 4.5, in which we can identify another
series interconnection (yellow color) and a negative-feedback interconnection (orange color).
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Figure 4.5: Block diagram of the system (series and negative-feedback interconnections).

By calculating the equivalent transfer functions, we get:

o s) 2s+4 1 2s+4
s) = =
yellow s24+554+8s+1 3 +6s2+135+8
3
2+65+5 3
Horange(s) == 3 =2
I+ S2+65+5 ST+6s+8

The obtained block diagram can be simplified further by identifying another feedback intercon-
nection, which corresponds to:

2s5+4
H _ S46s2+13548_ _ 25 +4
rea(s) = 14 —25t4 34652+ 155+ 12
534652413548
3
2 @
RE) sS4+ 65+ 8 o)

-

Figure 4.6: Block diagram of the system (negative-feedback interconnection).



Finally, by considering the series interconnection of Hy.q(s) and Horange (s), we get the solution:

6s + 12
s3> + 125% + 5953 + 15052 + 1925 + 96

Hgy(s) = Horcmge(s)Hred(s) =

The static gain is:
Hgy(0) = 12/96 = 1/8

The overall system has a single zero in —2, and five poles in: —4, —2.298+1.8073j, —2.298—1.8073,
—2 and —1.4039. Hence, we will find the following terms in the step response:

1(t), e*1(t), e 22" cos(1.8073t + ¢)1(1), e 2 1(t), e 149%1(¢)

Since all the poles of Hry (s) have a negative real part, the system Hgy(s) is BIBO stable. We
cannot say anything about the internal stability of the underlying state-space representation,
because we do not know if any of the transfer function in the scheme there was a zero-pole
cancellation. In case this did not happen or if the cancellations involved zero-pole pairs with
negative real part, the overall system would be asymptotically stable as well. Otherwise, it
might be only marginally stable or even unstable.



