5 Assignment

5 Assignment

In this assignment, you are first going to work with two mandatory assignments that will
help you in understanding the theoretical behavior of first-order and second-order systems.
Afterwards, another mandatory exercise will make you work with a simulated real-world
scenario concerning a first-order system available in our kitchens (a hob, pa norks kokeplate).
Finally, you are advised to take a look at the three optional exercises at the end of this document,
which would strengthen your understanding of the behavior of first-order, second-order (without
zeros) and second-order (with a real zero) systems.

5.1 First-order systems (mandatory)

Question 5.1
Given the following transfer functions:

Hi(s) = (5.1)

4s+ 1

Hz(S) = (52)

4s+5

(a) Find the poles and the 2% and 5% settling times for these transfer functions.

(b) Let the input signal u(t) be a unit step. Find the corresponding step responses y; ()
and y,(t). Hint: Write H,(s) and H,(s) in the standard form H(s) = H(0)/(1 + s7).

(c) Find the steady-state value of y;(¢) and y»(t).

(d) Draw the step responses y; (t) and y,(t).

Solution: (a) A pole is a value of s that makes the transfer function singular. To find the pole(s),
we set the denominator of the transfer function to zero, and solve the equation w.r.t. s. For

H;(s), we obtain:
4s+1=0 = s=-1/4

while for H;(s), we obtain:
4s+5=0 = s=-5/4

In order to find the 2% and 5% settling times, we need to determine the time constant z, which
means rewriting the transfer function in the form H(0)/(1 + s7). H;(s) is already in this form,
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so 71 = 4. On the other hand:

2 2[5
4s+5 1+s4/5

Hy(s) =

which shows that 7, = 4/5s = 0.8 s (be careful: this s here means seconds, whereas the s in the
transfer function is the complex frequency of the Laplace domain!!). Hence:

Hl(S) : TS5% = 31’1 =12s TsZ% = 4T1 =16 SHz(S) : TSS% = 31’2 =24s TsZ% = 4T2 =3.2s

(b) The input signal is u(t) = 1(t), which corresponds to:

1
Uls) = L{1(D)} = <
Then, the Laplace transform of the output is given by:

1
s+1/t

H(0) 1

1
g ;:Hmﬂz‘

which is inverse-Laplace-transformed into:

y(t) = H(0) (1-¢7/7) 1)
So we have:
yi(t) = (1= 100)

ya(t) = (1—5%)un

(520 [ &)

(c) The steady-state values of y; (t) and y,(¢) can be found by allowing ¢t — +oo in the corre-
sponding expressions:

_ . _ . _ —t/4 —
iss = lim yi(6) = lim (1-¢)1(1) =1
. .2 _54 2
Yass = I'EIPOO yZ(t) h tEIPOO g (1 e ) 1(t) B g
The same result can be found by applying the final value theorem to the functions Y; (s) and

Y2 (S)

(d) The step responses y; (t) and y»(t) are shown in Fig. 5.1. They can be generated in MATLAB
by writing:

>> H1 = tf(1,[4 11);
>> H2 = tf(2,[4 51);
>> step(H1,H2)

It can be observed that:



y1(t) and y,(t) reach csteady-state values corresponding to H;(0) = 1 and Hz(0) = 2/5 =
0.4, respectively;

y1(t) and y2(t) reach 63% of their steady-state values after r; = 4s and r, = 0.8s5,
respectively;

y1(t) and y,(t) reach 95% of their steady-state values after 3r; = 12s and 37, = 2.4,
respectively;
y1(¢) and y,(t) reach 98% of their steady-state values after 4r; = 16 s and 47, = 3.2,

respectively.
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Figure 5.1: Step responses i (¢) and y,(t).



5.2 Second-order systems (mandatory)

Question 5.2

For each of the following transfer functions:

15

H(s)= ——> 53
1(s) s2+1.65 + 16 (5:3)
Hy(s) = ———— (5.4)
s) = .
2 252 +8s+8
10

Hy(s) = —— 55

)= T a0 (5:5)

(a) Find the poles of the transfer function.

(b) Find the system’s static gain H(0), the natural frequency wy and the damping ratio
{. Determine the type of system (undamped, underdamped, critically damped or
overdamped).

(c) For the underdamped systems from point (b), find the maximum overshoot, the 5%
settling time, the 2% settling time, the peak time and the rise time.

(d) Using the final value theorem, determine the steady-state value when u(t) = 1(t).

(e) Using MATLAB, obtain the responses of y;(t), y2(t) and y3(¢) to the unit step u(t) =
1(¢), and check that they correspond to the values obtained at point (d). Moreover, in
the case of underdamped systems, also check that the obtained responses correspond
to the values computed at point (c).

Solution: (a) The poles of the transfer functions are calculated as follows:

Hi(s):s°+1.6s+16=0 = s15=-0.8%3.919j
Hy(s): 25 +85s+8=0 = s59=-2
Hs(s):s*+7s+10=0 = 519 ={-2,-5}

(b) In order to find H(0), wy, ¢, the transfer functions must be in one of the following two
normalized forms:

H(s) H(0)wj H(0)
S) = =
52+2§a)0$+(4)(2) 5_22+£S+1
wy o
For H;(s), we obtain:
H(O)a)g =15 wo = 4rad/s
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H(s) = —— =
1(s) s2+1.65+ 16

20wy =1.6 = 1{ H(0)=15/16 = 0.9375
wi =16 {=1.6/2wy =0.2



The process represented by Hj(s) is underdamped since 0 < { < 1.

We can rewrite Hy(s) as:

5/2 5/8
Hy(s) = =
2(s) s?+4s+4  1+s+s%/4
from which we obtain:
H(0)w? =5/2 wp = 2rad/s
2§Q)0:4 = §:4/2(1)0:1
wi=4 H(0) =5/2w3 = 5/8 = 0.6250

The process represented by H;(s) is critically damped since ' = 1.

For Hj(s), we obtain:

H(O)wg =10 wo = V10rad/s = 3.16 rad/s
Hg(S)Zmﬁ 2{0)0:7 = g:7/2\/1_0&111
S w? =10 H(0) = 10/w? = 1

The process represented by Hs(s) is overdamped since { > 1.

(c) For underdamped second-order systems, the maximum overshoot can be computed as follows:

__gn
MO[%] = 100e Vi-2?

The 5% and 2% settling times are computed as follows:

3 4
Ts59, = — Ts00q, = —
$5% {0)0 $2% {wo

The peak time and rise time are computed as:

t

T 1 _1
F 1= tr‘wo—\m[”'m ( {

Given the previously computed wy and {, we must compute the above values for Hj (s), thus
obtaining Table 5.1.

Transfer function | MO [%] | Tgsq | Tson | tp ty
Hi(s) 52.66 | 3.75s | 5s | 0.8s | 0.45s

Table 5.1: Second-order response parameters.

(d) Using the final value theorem, we can compute:

yi(00) = lin% sw = H;(0) = 0.9375
s— s

Hy(s)
s

H;(s)
s

Yz (o0) = lim s = H,(0) = 0.6250
s—

y3(00) = lir%s =H;(0) =1
N



(e) The step responses are shown in Figs. 5.2-5.4. It can be seen that they are compatible with
the values computed at points (c)-(d) of this exercise.
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Figure 5.2: Step response y; (t) (Second-order).
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Figure 5.3: Step response y,(t) (Second-order).
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Figure 5.4: Step response y3(t) (Second-order).

5.3 Hob (NO: kokeplate) (mandatory)

Let’s consider a hob (pa norsk: kokeplate), as those you can find in your home. The following
equation describes the typical dynamics of the temperature T(¢):

(0 = 12 = 25 (10 = T (0) 6:6)

where:

« P(t) [W] is the electrical power applied to the hob;

« T(t) [°C] is the temperature of the hob, assumed to be evenly distributed,;

o Tump(t) = 20°C is the ambient temperature in the kitchen;

« m = 0.5kg is the mass;

« ¢, = 460]/(kg"C) is the specific heat capacity of the hob;

« h=20]/(sm?°C) is the specific heat transfer coefficient between the hob and the air;

« A =0.1m? is the area of the hob/air surface.

In the following, we will consider that:

« T(t) is the output variable y(t) = T(¢);



« P(t) is the input variable u(t) = P(¢);

o Tump(t) is the disturbance signal w(t) = Tymp (1).

Question 5.3

Do the following:

(a) Laplace transform (5.6) and find the transfer function between U(s) and Y(s) as:

_ Y(s) _ H,(0)
Hy(s) = U(s) 1+st 5.7)
What are the values of H,(0) and z?
(b) Find the transfer function from W (s) to Y(s) as:
_ Y(s) _ Hw(0)
Hu(s) = W(s) 1+st, (5:8)

What are the values of H,,(0) and z,,? Explain why H,,(0) = 1.
(c) Find the poles of H,(s). Confirm the result by using the pzmap command in MATLAB.

Solution: (a) Eq. (5.6) can be expressed as:
1 hA
y(t) = —u(t) — — (y(1) - w(1))
mc, mcy,

which is Laplace transformed into:

SY(9) = - U(5) = 22 (¥(5) = W(s)
P p

that can be rewritten as:

(s + h—A) Y(s) = ——U(s) + T w(s) (5.9)
mCP me me

By setting W (s) = 0 we can find H,(s) = Y(s)/U(s) as:

1 1
Y(S) _ mcp _ TA

B hA mep
U(S) S+m_cp 1+shA

Hp(s) =

By replacing appropriately the parameters’ values, we find:

1
Y(s 2001 0.5
( ) — 2000.51.460 — (510)
U(s) 1+s559¢  1+s115

Hp(s) =




Hence, the static gain is H,(0) = 0.5 whereas the time constant is 7 = 115s.

(b) By setting U(s) = 0 in (5.9):

hA hA

(s + —) Y(s) = —W(s)
mc, mcy

so that:
Y(s) e 1
H,(s) = = Ld
hA mc.

W(S) + m_cp 1+ sh_z‘f

By replacing the parameters’ values, we obtain:

Y(s) 1 1

W(s) 1+s% T 1+115s

Hy(s) =

The static gain is H,,(0) = 1 and the time constant is 7,, = 115s. The reason why H,,(0) = 1
is that if we assume u(t) = 0, then the hob’s temperature T(t) will converge to T, (t) at
steady-state.

(c) The pole of H,(s) can be found by setting the denominator of H,(s) to zero:

1 1
115s+1=0 = s=p=—-——=-——
T 115

In MATLAB you can use the following lines (see Fig. 5.5):
>> H=tf(0.5,[115 1])

115 s + 1
Continuous-time transfer function.

>> pzmap(H)
>> axis([-0.02 @ -1 11)
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Figure 5.5: The transfer function H, (s) has a single pole in —1/115 = —0.0087, as calculated.

To simulate the hob, we will use the Simulink model kokeplate_tidskonstant.slx which is
shown in Fig. 5.6
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Figure 5.6: Simulink model of the hob.



To avoid an initial transient response from 0°C to 20°C due to the ambient temperature (before
turning on the power), Simulink has a block called Transfer Fcn (with initial output)
which you can find in the Simulink Extras folder under Additional Linear. Therein, we specify
the system to have an initial output of 20 (same as the constant block which represents Tomg(t)).
Double-click on the block to see how this is specified.

The model uses the following simulation configuration parameters:
- step time: 500s
« integration method: Euler
« fixed step length: 1s

By simulating the model, you apply 100 W at ¢ = 50 s (this corresponds to set 1 on the switch).
Remember that the total response consists of the sum of the partial responses due to the ambient
temperature and the input:

Y(s) = Hp(s)U(s) + Hy(s)W(s) (5.11)



Question 5.4

Based on the response in Simulink, determine the static gain H,(0) and the time constant
7 for the transfer function H,(s). You can do this using the built-in Cursor Measurement
function in Simulink, see Fig. 5.7.
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Figure 5.7: Tool for reading response data.

Solution: By setting the hob to 100 W, the output moves to 70°C. The starting point was 20°,
which means that the 100 W step input produces an increase of the output of 50°C. This is
confirmed by taking the product of the input magnitude (100 W) and the static gain H,(0) = 0.5,
see Eq. (5.10). To confirm the time constant 7, we take 63% of 50°C which is 31.5°C. The time
constant is therefore read 31.5°C above the starting point of 20°C, i.e. 51.5°C. In addition, we
must take into account that the step input was applied at t = 50 s, which must be subtracted
from time.

By using the reading tool in Simulink we find the data in Fig. 5.8.



File Tools View Simulation Help k]

Q- OP® - Q- - Fld-

u(s) B |7 ¥ Trace Selection 7 X
oo —fF—tz y =
i A
" : ¥ ¥ Cursor Measurements X
ot | » Settings
At : ¥ Measurements
= : Time Value
' | 1]/ 0000 2 0008+01
| P2y 183850
y(s) v || AT AY IrheeD
KRIE i
60 S 1/AT 8.783 mHz

40
20 —/

0 100 200 300 400 500

/ AY | AT 276.692 (/ks)
|
|
|
|
|
|

Figure 5.8: Tool for reading response data.

We see that the response passes to 51.5°C after t = 113.85 s, which is very close to the value
7 = 115 s appearing in Eq. (5.10).

Question 5.5

Let us assume that you think that the time constant was relatively long when you turned
the hob to 1, and that you would rather examine the time constant when you set the hob
to 2, which is equivalent to 200 W. Simulate the model with this new input and determine
the gain and time constant. Have they changed, and if so, to what value? What has this
taught you?

Solution: By using 200 W, the output moves to 120 degrees. The starting point was 20 degrees,
which gives an increase of 100 degrees. The 63% of 100 degrees is 63 degrees, so the time
constant will be read 63 degrees above the starting point of 20 degrees, i.e. at 83 degrees. In
addition, the step time ¢ = 50 seconds must be subtracted from the value read on the plot. Using
the reading tool in Simulink, we find the data shown in Fig. 5.9.
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Figure 5.9: Reading the time constant in Simulink.

You can see that the output reaches 83 degrees after 7 = 113.8 seconds. This is identical to the
value found previously and quite close to the actual value of 7 = 115 s that we found in Hj (s).
This tells us that the time constant is independent from the size of the input signal: you do not
change the dynamical properties of the hob! (H(0) and ) by increasing the size of the input
signal. However, the hob will reach a higher temperature.

As a chef, how would you get the hob to achieve a temperature of 120°C as soon as possible
(without overshoot)? The hob can be turned up to power 6, i.e., 600 W. To find out this, double-
click on the Switch so that you use the block Sekvens av effektverdier (this is a Source
block called Repeating Sequence Stair). By double-clicking on the block you get the window
shown in Fig. 5.10.

IThis statement holds true as long as the linearized model is still a valid approximation of the underlying nonlinear
system!!



Block Parameters: Sekvens av effektverdier X
Repeating Sequence Stair (mask) (link)
Discrete time sequence is output, then repeated.

Main  Signal Attributes
Vector of output values:
|[ones(1,50)*0 ones(1,30)*600 ones(1,120)*300 ones(1,300)*200] |

Sample time:
[ [E

J Cancel Help Apply

Figure 5.10: Parameterization of the hob input.

In Fig. 5.10, 0 W is used for the first 50 seconds, followed by 600 W for 30 seconds, then 300 W
for 120 seconds and finally 200 W for 300 seconds. Make sure that the sum of the lengths of the
ones is the same as the simulation time (500), e.g., 50+30+120+300 = 500. Always use 0 W in
the first 50 seconds so that the first step input happens at 50 seconds.

Question 5.6

Your task is to find the sequence of input values that makes the time required by the hob
to reach 120°C as short as possible (remember that the temperature should not exceed
120°C either). In this way, the response time T, (i.e., the time required to reach 63% of the
final value using active manipulation of the control signal) will be as short as possible, and
you would act like a human temperature controller for the hob. What value do you find
for the response time T, when you choose actively the input signal? How much smaller is
it when compared to the open-loop time constant?

Comment: As you have now learned, the open-loop time constant tells you how the system
reacts to a step input of arbitrary magnitude. However, applying a step input is not the most
efficient way to get a system to swing to a new value of its output: it is possible to make a
system to behave faster by using actively the input signal, which is exactly what the controller
will do automatically in a feedback control system.

Solution: After some trial and error with the Repeating Sequence Stair, the start-up sequence
shown in Fig. 5.11 was found, which gives the response shown in Fig. 5.12.
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Figure 5.11: Input sequence to drive the hob to 115 degrees much faster.
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Figure 5.12: Response with active use of the control input.

We see (Fig. 5.13) that the output reaches 83 degrees at 76.99 seconds, which corresponds to an
equivalent time constant of:
T, = 26.99 seconds

which is more than 4 times faster than the open-loop process.
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Figure 5.13: Response with active use of the control input.



