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7.1 Control of a third-order process

7.1.1 Introduction

In Canvas, you will find the Simulink file reg_sys.slx which will be used to simulate the
feedback control system for the third-order process:

0.1 0.1

H(s) = =
(s) (155 +1)(10s + 1)(5s + 1) 75083 + 275s% + 30s + 1

(7.1)

We will assume that the measuring instrument (situated on the feedback loop) has a time
constant of 2 seconds and a static gain of 1, so that it is described by a transfer function:

M(s) = (7.2)

1+ 2s

A PID with filtered derivative effect has been implemented (red block). By double click-
ing on it, you can modify its parameters. You will see that the option of specifying the
integrator limits is available, which you can do for example by replacing the values under
Max._paadrag/Min_paadrag from Inf/-Inf to 100/-100. This is done to avoid that the in-
tegrator keeps integrating the error signal when the actuators are already working at their
maximum value, which is technically known as anti-windup. The reference signal goes from 0
to 1 at time t = 10 seconds, and then back to 0 at time t = 210 seconds.

7.1.2 Routh-Hurwitz criterion

Let us consider the following proportional controller transfer function, where K, is the propor-
tional gain':

Here are a few cool commands you might want to try in MATLAB, although you will most likely not use them in
this exercise: lorenz, image, penny, why, xpbombs.
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Question 7.1

Use the Routh-Hurwitz criterion to determine the inequalities that must be satisfied by K},
in order to get BIBO stability of the closed-loop transfer function:

H(s)C(s)

G = TG CME)

Then, simulate the system with a value of K, slightly lower and slightly bigger than the
upper bound that you computed. Do the simulations confirm the theoretical analysis?

Hint: If you compute H(s) correctly, then its denominator will have the form ags* + a;s® +
azs® + ass + aq. It might be convenient to divide every coefficient by aq to get a polynomial
in the form s* + bys® + bys? + bss + by before building the Routh-Hurwitz table. Moreover,
something to remember to ease the calculations is that you can always multiply all the
numbers in the same row of the table by the same positive number, without changing the
final inference obtained from the table.

7.1.3 Manual tuning of the PID controller

You will now tune manually the controller (Table 7.1 resumes the effect of increasing each
individual parameter).

T parameter Rise time Overshoot | Settling time | Steady-state error Stability
Ky Decrease Increase | Small change Decrease Degrade
K; Decrease Increase Increase Eliminate Degrade
Ky Minor change | Decrease Decrease No effect Improve (if K; small)

Table 7.1: Effect of increasing PID parameters.

For a PI controller, you should first increase the proportional gain K}, until satisfactory stability
is seen in the response of y(f) to the step change in r(t). Then increase the integral gain K;
(which means decreasing the integral time T;) until the closed-loop system is almost unstable.
Finally, tune again K}, until the stability is deemed satisfactory.

Question 7.2

Let Max_paadrag/Min_paadrag be Inf/-Inf and find values for K;, and T; for a PI con-
troller. Remember that there is not a single correct solution, but you need to find some
values that provide a response that you consider to be satisfactory. Try to get a fast
response without too much overshoot. Include the parameter values and the obtained
plots.

For a PID controller, increase the gain K}, until satisfactory stability is seen in the response of



y(t) to the step change in r(t). Then, activate the integral and derivative terms and tune them
taking into account Table 7.1.

Question 7.3

Now, find a good value for the parameter T; to be used in the PID controller. You will
need to choose also the parameter T¢: a rule of thumbs is to choose is approximately as
Tf ~ 0.2T;. Compare the response obtained using the PID controller with the response
obtained with the PI controller.

7.1.4 Control without anti-windup

In order for you to be able to see the effect of the integrator limitation, you must increase the
reference change so that the actuator goes into saturation.

You must still let Max_paadrag/Min_paadrag to be Inf/-Inf. To illustrate the phenomenon,
you should set Ty = 0, but keep the other parameters that you found. The reason for this is that
the derivative effect makes the input very hectic, so that it becomes hard to interpret from the
plots what is going on.

Question 7.4

Change Ny_Verdi in the reference block to 12, so that the reference goes from 0 to 12 at t
=0 and back to 0 at t = 210 s. Then simulate the model, and observe the input and output
signals. Explain in words what is happening.

7.1.5 Control with anti-windup

Specify now Max paadrag/Min paadrag to 100/-100.

Question 7.5

Use the PID parameters from Question 7.3. Simulate again and observe the computed
control input and the obtained output response. Describe what is happening.

7.2 Control of first-order processes

You will now design a controller for the following first-order system:

0.5
H(s) = —— 7.4
(s) 200s + 1 (7.4)



7.2.1 P-controller

Let us start first with the proportional controller (K}, is the proportional gain):

C(s) =K, (7.5)

Question 7.6

Find out the closed-loop transfer function H;(s) = Y(s)/R(s), where Y(s) is the output of
H(s) and R(s) is the reference signal, under the assumption that the input to the controller
is E(s) = R(s) — Y(s). Put H,;(s) in the standard first-order form and find the expression
of how the pole of H;(s) moves when K, increases.

Question 7.7

From H(s), find an expression of how the closed-loop time constant z.; and the closed-
loop static gain H;(0) vary as a function of Kj,.

Question 7.8

What value of K}, should you use to obtain 7; = 100 s?

Question 7.9

Implement the feedback control system comprising process + controller (with the K,
computed as answer to Question 7.8). Use a unit step signal and simulate with a total
length of 500's. Use a fixed-step Euler integration method with fixed-step size 1s (you can
change this parameter by right-clicking on a blank point of the Simulink scheme, then
select Model configuration parameters). Provide two plots: i) comparison between
the reference r(t) and the output y(t); ii) usage of the control input u(t). What are the
closed-loop time constant and closed-loop static gain as read from the plots? Do they
correspond to the theoretical ones?

Question 7.10

What is the steady-state error e, = lim;_,o e(t)? Verify this value by applying the
final value theorem either directly to E(s) or indirectly to Y(s), which means that after
computing Yo, = lim;_, y(2), you calculate e = oo — Yoo-



7.3 Pl-controller

To eliminate the steady-state error to a step in the reference signal R(s), you will use a PI

controller given by:
1+ sT;

sT;

where K, is the proportional gain and T; is the integral time.

C(s) =K, (7.6)

Question 7.11

Find the closed-loop transfer function Y(s)/R(s).

Question 7.12

Prove analytically that the steady-state error to a step change in the reference signal R(s)
is e« = 0 when you use a PI controller (as long as the closed-loop system is BIBO stable).

Question 7.13

Confirm the theoretical result from the previous question by simulating the feedback
control system with the PI controller in Simulink. Choose values of K;, and T; so that the
closed-loop system is BIBO stable. Let the length of the simulation be 500 seconds.

Question 7.14

Assume that the closed-loop system must have a natural frequency wo = 0.01rad/s and a
damping factor & = 0.75. How should T; and K}, be selected to satisfy these specifications?
Use Simulink to simulate the closed-loop response (use a simulation length of 500 seconds),
and discuss how the zero at s = —1/T; in H,(s) affects the response.



