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7.1 Control of a third-order process

7.1.1 Introduction

In Canvas, you will find the Simulink file reg_sys.slx which will be used to simulate the
feedback control system for the third-order process:

0.1 0.1

H(s) = =
(s) (155 +1)(10s + 1)(5s + 1) 75083 + 275s% + 30s + 1

(7.1)

We will assume that the measuring instrument (situated on the feedback loop) has a time
constant of 2 seconds and a static gain of 1, so that it is described by a transfer function:

M(s) = (7.2)

1+ 2s

A PID with filtered derivative effect has been implemented (red block). By double click-
ing on it, you can modify its parameters. You will see that the option of specifying the
integrator limits is available, which you can do for example by replacing the values under
Max._paadrag/Min_paadrag from Inf/-Inf to 100/-100. This is done to avoid that the in-
tegrator keeps integrating the error signal when the actuators are already working at their
maximum value, which is technically known as anti-windup. The reference signal goes from 0
to 1 at time t = 10 seconds, and then back to 0 at time t = 210 seconds.

7.1.2 Routh-Hurwitz criterion

Let us consider the following proportional controller transfer function, where K, is the propor-
tional gain':

Here are a few cool commands you might want to try in MATLAB, although you will most likely not use them in
this exercise: lorenz, image, penny, why, xpbombs.
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Question 7.1
Use the Routh-Hurwitz criterion to determine the inequalities that must be satisfied by K},
in order to get BIBO stability of the closed-loop transfer function:

__ H)C(s)
"~ 14+ H(s)C(s)M(s)

G(s)

Then, simulate the system with a value of K, slightly lower and slightly bigger than the
upper bound that you computed. Do the simulations confirm the theoretical analysis?

Hint: If you compute H(s) correctly, then its denominator will have the form ags* + a;s® +
azs® + ass + aq. It might be convenient to divide every coefficient by aq to get a polynomial
in the form s* + bys® + bys? + bss + by before building the Routh-Hurwitz table. Moreover,
something to remember to ease the calculations is that you can always multiply all the
numbers in the same row of the table by the same positive number, without changing the
final inference obtained from the table.

Solution: The closed-loop transfer function is:

0.1
Ha(s) = TS 2Ts a0 P _ 0.1K, (1 + 2s)
¢ - 0.1 1 - 3 2
L+ s Kens (75087 +2755% +30s + 1) (1+25) +0.1K,,

The denominator of Hg;(s) is:
1500s* + 1300s® + 335s° + 325 + 1 + 0.1K,
By dividing everything by 1500, we obtain the following polynomial:

13 . 67 8 1+0.1K
st =P+ —s? + —s M

15 300 375 1500
We can build the first two rows of the Routh-Hurwitz table from the coeflicients of the above

polynomial, and then multiply the second row by 15 to obtain:

1 6_7 (1+0.1Kp) 1 i (1+O.1Kp)
300 1500 = 300 1500

L] 8 0 13 | & 0

15 375 25

Table 7.1: Routh-Hurwitz table (Rows 1-2).

So far, it is good, as both 1 and 13 are positive. The elements in the third row are calculated as:

67 1-% 31

300 13 156
(1+0.1K,) 1-0 (1+0.1Kp)

1500 13 1500



(1+0.1Kp)

1 ﬂ (1+0.1Kp) 1 ﬂ

SgO 1500 330 1500
13 B 0 = |13 I 0
i 1+0.1Kp 13 1+O.1Kp
156 1500 0 31 125 0

Table 7.2: Routh-Hurwitz table (Rows 1-3).

so we obtain (the table on the right is obtained by multiplying the third row by 156):

The first column of the table still contains all positive elements, so we can continue further by
computing the only non-zero element of the fourth row of the table:

1071 - 16.9K,,
3875

8 13-13(1+0.1K,)
25 125 - 31 B

so we obtain (the table on the right is obtained by multiplying the fourth row by 3875): Finally,

1 67 (1+0.1K,) 1 67 (1+0.1K,)
300 1500 300 1500
13 = 0 - 13 = 0
13(1+0.1K,) 13(1+0.1K,)
1071 3116 9K, 125 . L 123 - .
- - p —_—
——— 0 0 1071 - 16.9K, 0 0

Table 7.3: Routh-Hurwitz table (Rows 1-4).

we can complete the table by computing the last element (which is reported hereafter multiplied
by 125 and divided by 13): which means that the following two inequalities must be satisfied:

1 67 (1+0.1K)p)
300 1500
13 = 0
31 13(1;3.511(,,) 0
1071 - 16.9K,, 0 0
1+0.1K, 0 0

Table 7.4: Routh-Hurwitz table (Rows 1-5).

K, <1071/16.9 = 63.3

1071 - 16.9K, > 0
{ { K, >-1/0.1=-10 (74)

1+0.1K, >0

7.1.3 Manual tuning of the PID controller

You will now tune manually the controller (Table 7.5 resumes the effect of increasing each
individual parameter).

For a PI controller, you should first increase the proportional gain K, until satisfactory stability
is seen in the response of y(¢) to the step change in r(t). Then increase the integral gain K;



T parameter Rise time Overshoot | Settling time | Steady-state error Stability
Kp Decrease Increase | Small change Decrease Degrade
K; Decrease Increase Increase Eliminate Degrade
Ky Minor change | Decrease Decrease No effect Improve (if K; small)

Table 7.5: Effect of increasing PID parameters.

(which means decreasing the integral time T;) until the closed-loop system is almost unstable.
Finally, tune again K, until the stability is deemed satisfactory.

Question 7.2

Let Max_paadrag/Min_paadrag be Inf/-Inf and find values for K, and T; for a PI con-
troller. Remember that there is not a single correct solution, but you need to find some
values that provide a response that you consider to be satisfactory. Try to get a fast
response without too much overshoot. Include the parameter values and the obtained
plots.

Solution: A satisfactory response is obtained with K, = 30, as shown in Fig. 7.1. By decreasing
the integral time until T; = 15, the system is driven to the edge of instability, as shown in Fig.
7.1. Then, further refining of the gain K}, leads to the response in 7.3 which, in my opinion, is
satisfactory and, hopefully, also in yours.
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Figure 7.1: Reference signal and output signal, P-controller: K, = 30, T; = co.
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Figure 7.2: Reference signal and output signal, PI-controller: K, = 30, T; = 15.
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Figure 7.3: Reference signal and output signal, PI-controller: K, = 10, T; = 15.

For a PID controller, increase the gain K}, until satisfactory stability is seen in the response of
y(t) to the step change in r(¢). Then, activate the integral and derivative terms and tune them
taking into account Table 7.5.



Question 7.3

Now, find a good value for the parameter T; to be used in the PID controller. You will
need to choose also the parameter Ty: a rule of thumbs is to choose is approximately as
Tf ~ 0.2T;. Compare the response obtained using the PID controller with the response
obtained with the PI controller.

Solution: I was quite satisfied with the response obtained with T; = 10 s and Ty = 25, as shown
in Fig. fig:scope4. In fact, the derivative action damped quite a lot the overshoot :D
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Figure 7.4: Reference signal and output signal, PID-controller: K, = 10, T; = 15, Ty = 10, Ty = 2.

7.1.4 Control without anti-windup

In order for you to be able to see the effect of the integrator limitation, you must increase the
reference change so that the actuator goes into saturation.

You must still let Max_paadrag/Min_paadrag to be Inf/-Inf. To illustrate the phenomenon,
you should set Ty = 0, but keep the other parameters that you found. The reason for this is that
the derivative effect makes the input very hectic, so that it becomes hard to interpret from the
plots what is going on.

Question 7.4

Change Ny_Verdi in the reference block to 12, so that the reference goes from 0 to 12 at t



=0 and back to 0 at t = 210 s. Then simulate the model, and observe the input and output
signals. Explain in words what is happening.

Solution: Fig. 7.5 shows the obtained plots. You can see from subfigure 6 that the output does
not reach the reference, and that the error is bigger than 1 (subfigure 1). The reason why this
happens is that the control input (blue line in subfigure 4) is limited to 100 by the saturation,
although the computed control action keeps increasing (red line in subfigure 4) due to the effect
of the integrator (subfigure 5). When the reference finally goes down again (at time t = 210
seconds), the value of the integrator must first be reduced before the computed control input
reduces as well. The problem is that the integrator has accumulated a value of almost 500
(subfigure 5), and it takes some time before the integrator discharges (this is the phenomenon
known as windup, obviously we refer to any technique able to avoid this phenomenon as
anti-windup). For this reason, the output is kept high for a long time after the reference has
gone to zero, which is undesirable.
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Figure 7.5: PI control without anti-windup under big reference changes.



7.1.5 Control with anti-windup
Specify now Max paadrag/Min paadrag to 100/-100.

Question 7.5

Use the PID parameters from Question 7.3. Simulate again and observe the computed
control input and the obtained output response. Describe what is happening.

Solution: Fig. 7.6 shows the results obtained using the PID control with the implemented anti-
windup. From subfigure 6, you see that the output still does not reach the desired reference
r(t) = 12: there is nothing you can do about this, as this reference is beyond what you can reach
with the available input (compare this with what would happen asking a standard car to reach
the desired speed of 500 km/h). However, the value of the integral action is now limited to 100
(subfigure 5). The computed control action is still a little beyond the maximum available input
due to the effect of the proportional action (see subfigures 3 and 4). As soon as the reference
signal goes back to zero (at time t equal to 210 seconds), the proportional action is reduced to
a negative number (subfigure 3) due to the change of sign in the tracking error (subfigure 1),
and the integral action starts decreasing (subfigure 5). In this way, the control action reduces
immediately (subfigure 4), which leads to an immediate reduction of the output (subfigure 6).
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Figure 7.6: PID control with anti-windup under big reference changes.

7.2 Control of first-order processes

You will now design a controller for the following first-order system:

0.5
H(s) = —>— 75
(%) = 2005+ 1 (7.5)

7.2.1 P-controller

Let us start first with the proportional controller (K}, is the proportional gain):

C(s) =K, (7.6)

Question 7.6



Find out the closed-loop transfer function H;;(s) = Y(s)/R(s), where Y(s) is the output of
H(s) and R(s) is the reference signal, under the assumption that the input to the controller
is E(s) = R(s) — Y(s). Put H¢;(s) in the standard first-order form and find the expression
of how the pole of H,;(s) moves when K, increases.

Solution: The closed-loop transfer function is:

HG)C(s)  mwKp 05K,

H = = =
al(s) 1+H(s)C(s)  1+22K, 200s+1+0.5K,

which can be put in the standard first-order form as follows

0.5K

1+0.5K,

HCl (S) = 20(‘;)

405K,
The single pole is given by:
200 1+0.5K,
1+ —s =0 = §= ——
1+0.5K, 200

It can be seen that the pole moves towards the left of the complex plane when K}, increases,
which means that at least theoretically it is possible to have an arbitrarily fast response by
increasing the gain K,,.

Question 7.7

From H(s), find an expression of how the closed-loop time constant z.; and the closed-
loop static gain H;(0) vary as a function of K.

Solution: Given the above standard first-order form, by comparison with:

H(0)
He(s) = ———
1+ sty
we find out that:
O-SKP
He(0) = ———
1+0.5K,
200
Tl = ————
1+0.5K,

Question 7.8

What value of K, should you use to obtain 7; = 100 s?



Solution: In order to obtain r,; = 100 s, one must choose:

200

———— =100 = K,=2
1+0.5K,

Question 7.9

Implement the feedback control system comprising process + controller (with the K,
computed as answer to Question 7.8). Use a unit step signal and simulate with a total
length of 500 s. Use a fixed-step Euler integration method with fixed-step size 1 s (you can
change this parameter by right-clicking on a blank point of the Simulink scheme, then
select Model configuration parameters). Provide two plots: i) comparison between
the reference r(t) and the output y(t); ii) usage of the control input u(t). What are the
closed-loop time constant and closed-loop static gain as read from the plots? Do they
correspond to the theoretical ones?

Solution: The feedback control system comprising process + controller is shown in Fig. 7.7.
The plots obtained from the simulation are the ones shown in Figs 7.8-7.9. The theoretical
closed-loop static gain is:

05K, _ 05-2 _1_ .
1+05K, 1+05-2 2

He (0) =

which is the final value read from the plot of y(t). On the other hand, 63 % of the final value
corresponds to 0.315, which is reached at approx. 100 s, thus confirming that the closed-loop
time constant is 7.; = 100s.
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Figure 7.7: Simulink implementation of the control scheme.




Figure 7.8: Reference r(t) and output y(t), K, = 2.



Figure 7.9: Control input u(t), K, = 2.

Question 7.10

What is the steady-state error e, = lim;_,o e(t)? Verify this value by applying the
final value theorem either directly to E(s) or indirectly to Y(s), which means that after
computing Yo, = lim;_, y(2), you calculate e = oo — Yoo-

Solution: The steady-state error, as read from Fig. 7.8, is e = 0.5. Then we have:
e = lim e(t) = limsE(s) = lims (R(s) — Y(s))
f—o00 s—0 s—0

= lims (R(s) = Ha ()R()) = lims (1= Ha(5)) % —1-Hy(0)=1-05=0.5

7.3 Pl-controller

To eliminate the steady-state error to a step in the reference signal R(s), you will use a PI

controller given by:

1+ sT;
C(s) = Kp——"

(7.7)

i



where K, is the proportional gain and T; is the integral time.

Question 7.11
Find the closed-loop transfer function Y(s)/R(s).

Solution: The closed-loop transfer function is given by:

H(s)C(s) B O.SKp(l +sT;)
1+ H(s)C(s)  sT;(200s+1) + 0.5K, (1 + sT;)

H(s) =

Question 7.12

Prove analytically that the steady-state error to a step change in the reference signal R(s)
is exo = 0 when you use a PI controller (as long as the closed-loop system is BIBO stable).

Solution: The application of the final value theorem leads to:

Yoo = tlim y(t) = lin% sY(s) = lin% sH.;(s)R(s)
—00 s— s—
y 0.5K, (1 +sTy) 1 05K,
= 0 S Ty(200s + 1) +0.5K,(1+sT) s 0.5K,

which means that e = 7o — Yoo =1 —1 = 0.

Question 7.13

Confirm the theoretical result from the previous question by simulating the feedback
control system with the PI controller in Simulink. Choose values of K;, and T; so that the
closed-loop system is BIBO stable. Let the length of the simulation be 500 seconds.

Solution: The implementation of the PI controller in Simulink is shown in Fig. 7.10, where
K, = 30 and T; = 300 have been used. From Fig. 7.11, we see that the output reaches the
reference with zero steady-state error.
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Figure 7.10: Simulink implementation of the PI controller, K, =30, T; = 300.
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Figure 7.11: Comparison between r(t) and y(t) using the PI controller, K,, = 30, T; = 300.

Question 7.14

Assume that the closed-loop system must have a natural frequency wy = 0.01rad/s and a
damping factor & = 0.75. How should T; and K, be selected to satisfy these specifications?
Use Simulink to simulate the closed-loop response (use a simulation length of 500 seconds),
and discuss how the zero at s = —1/T; in H(s) affects the response.



Solution: We must put H;;(s), which we calculated at Question 7.11 in a standard form:

Hoi(s) = 0.5K,(1+sT) _ 1+sT 14T 78)
T 20052 + (T, + 0.5K,T}) s + 0.5K, 14 IH05KeTi 200ty o~ | 260 st
' ' P P + o5k, St osk,S o0 T2

The comparison between the transfer functions, taking into account ¢ = 0.75 and v, = 0.01rad/s,
leads to the following system of equations:

28 _ Ti+0.5K,T;
{ wo 150 = 0.5K,
1 _ _200T;
o= 10000 = 5=t
Then we get:
400T;
10000 = —— = K, = 0.04T;
K
P
and:
T; + 0.5 - 0.04T7
150= —— - =50+, =T, =100 = K, = 4
0.5 - 0.04T;

The simulation of the closed-loop response is shown in Fig. 7.12. Since the zero is in the left

half-plane, its effect will be to speed up the response, while at the same time increasing the
overshoot.
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Figure 7.12: Simulation using the PI controller, K, = 4, T; = 100.



