Reservoir Engineering PET120

Table of Contents

Petrophysics

Intro (summary)

- Golden zone (60-120 C)
- Migration is assumed to have started at burial depths where T is raised above 150 C
- Hydraulic fracturing of the caprock due to increasingly higher pore pressure, makes oil and gas escape to lower depths.
- Migration to low depth where T<60 C, will normally not occur due to less effective cementation process and/or microorganisms' affinity for hydrocarbons
- Experiments have shown that gas is generally generated at higher depths than oil
- Average duration of the production phase is 10-30 years drilling additional wells to stimulate production can increase lifetime
- P&A average duration is 5-10 years

Porosity:

$$
Porosity: \phi = \frac{Total \, volume \, of \, pores}{Total \, volume \, of \, rock \, (Bulk \, Volume)}
$$
\n
$$
\phi = \frac{V_p}{V_b} = \frac{V_b - V_{matrix}}{V_b}
$$
\n
$$
Ideal \, gas \, law: PV = nRT \rightarrow Boyles \, law: P_1V_1 = P_2V_2 \, at \, T = constant
$$
\n
$$
Porevolume: V_p = \frac{m_{saturated} - m_{dry}}{\rho_l}, \quad V = \frac{mass \, (m)}{density \, (\rho)}
$$

- Depends on packing arrangement of rock: Consolidate (particles are cemented/compacted), Unconsolidated (particles are loosely arranged like sand)

Saturation:

$$
V_p = V_0 + V_g + V_w
$$

\n
$$
S_i = \frac{V_i}{V_p}, \qquad i = water, oil \text{ etc}
$$

\n
$$
Oil \text{ Recovery Factor: RF} = \frac{Amount \text{ of recovered oil}}{Original \text{ Oil in Place}}
$$

\n
$$
Residual \text{ oil saturation: } S_{or} = (1 - S_{wi}) - \frac{V_{op}}{V_p}
$$

- S_{wi} irreducible water from 5-40%
- Used for Original Oil in Place (OOIP) and Original Gas in Place (OGIP)
- GOC- Gas-Oil Contact
- OWC- Oil-Water Contact
- FWL Free water level

Capillary Pressure/Reservoir Pressure

 σ – interfacial tension(IFT) θ – contact angle (measure of rock wettability r_c – capillary radius $p_h - b$ uoyancy pressure $\left(\frac{dE}{dD}\right)_w$ $\langle dp \rangle$ −

− rate of change with depth

- D depth
- C constant accountign for devation normal hyrdo static pressure

Equilibrium in a capillary tube for oil-water system:

$$
p_c = \frac{2\sigma_{ow}\cos\theta}{r_c} \quad or
$$

\n
$$
p_c = p_o - p_w = (\rho_w - \rho_o)gh
$$

\nat certain h, p_o and p_w:
\n
$$
p_w = \rho_o gh \quad m_e = \rho_o
$$

 $p_0 = -\rho_o gh$, $p_w = -\rho_w gh$ Negative sign indicates that Hydro Static Pressure resist Displacement

 $p_{c(FWL)} = p_o - p_w = 0$ at FWL $p_o = p_w$, $p_{c(GOC)} = p_{gas} - p_o = 0 \rightarrow p_{gas} = p_{oil}$ Pressure distribution in reservoirs:

The total pressure at any reservoir depth: overburden pressure is the sum of rock matrix pressure pore-fluid pressure.

$$
p_{ov} = p_m + p_f
$$

Fluid pressure (pore pressure) is determined relative to normal pressure (HSP)

$$
p_w(D) = \left(\frac{dp}{dD}\right)_w D + 14.7 + C
$$
 [pisa]

Abnormal reservoir pressure:

- Normal HSP curve is taken as a reference
- Pore pressure in excess of normal pressure is overpressure, under is under pressure
- Overburden pressure is constant at any particular depth→the differential $dp_{ov} = 0$

$$
-dp_f=-dp_m
$$

- Any reduction in fluid pressure dp_f , as it occurs during production, will lead to a corresponding increase in the grain (matrix) pressure dp_m

Reservoir pressure terminology (FP - fluid pressure, GP - grain pressure) Capillary Pressure calculations:

- The difference in phase pressure at the same formation depth refers to capillary pressure or buoyancy.
	- e.g. oil-water system at certain depth (h)

$$
p_{c(h)} = p_{o(h)} - p_{w(h)} = (\rho_w - \rho_o)gh = p_b
$$

- Capillary pressure is additive value:

$$
(p_c)_{gw} = (p_c)_{ow} + (p_c)_{go}
$$

- Threshold capillary pressure is minimum pressure required for oil to displace formation water, which initially saturates the porous space

Wettability:

$$
\cos \theta = \frac{\sigma_{os} - \sigma_{ws}}{\sigma_{ow}}
$$

\n
$$
p_c = p_{nwt} - p_{wt}, p_c = p_{oil} - p_{water}
$$

\n
$$
p_c = \sigma \cdot (\frac{1}{R_1} + \frac{1}{R_2}), p_o - p_w = \sigma_{ow} \cdot (\frac{1}{R_1} + \frac{1}{R_2}), R_1 = R_2 = \frac{r_c}{\cos \theta}
$$

\n
$$
\frac{p_{c,lab}}{(\sigma \cos \theta)_{lab}} = \frac{p_{c,res}}{(\sigma \cos \theta)_{res}}, p_{c,res} = \frac{p_{c,lab}\sigma_{res}}{\sigma_{lab}}, h_{res} = \frac{p_{c,res}}{g(\rho_{wet} - \rho_{nonwet})}
$$

\nPermeability:

Darcy's law for linear and horizontal flow:

$$
k = \frac{Q\mu}{A} \frac{L}{p_1 - p_2}
$$

- **Absolute permeability:** when the porous medium is completely saturated with one fluid
- **Effective permeability:** the ability of fluid to flow in the presence of other fluid in porous medium (e.g. effective permeability of oil in an oil-water system)
- **Relative permeability:** the ratio of effective permeability of a particular fluid at a particular saturation to absolute permeability of that fluid at total saturation.

Linear flow through layered bed:

$$
\bar{k} = \frac{\sum_{j=1}^{n} k_j h_j}{\sum_{j=1}^{n} h_j}
$$

Linear flow through parallel layers:

$$
\bar{k} = \frac{\sum_{j=1}^{n} l_j}{\sum_{j=1}^{n} \frac{l_j}{k_j}}
$$

Linear flow through stack of cylindrical layers:

$$
\bar{k} = \frac{\ln\left(\frac{r_e}{r_w}\right)}{\sum_j^n \left(\ln\frac{r_j}{r_{j-1}}\right)} \frac{1}{k_j}
$$

Radial flow & Fluid viscosity

Radial flow:

For a radial system with linear flow in a cylindrical reservoir where flow across the formation is horizontal and fluid moves radially towards the well bore:

$$
q = \frac{2\pi hk}{\mu} \cdot \frac{p_e - P_w}{\ln \frac{r_e}{r_w}}, h - pay \text{ zone thickness}
$$
\n
$$
p_e = p_w + \frac{q\mu}{2\pi kh} \ln \frac{r_e}{r_w}
$$

Skin effect:

$$
\Delta p_{skin} = ideal pressure (p'_w - actual pressure (p_w)
$$

\n
$$
\Delta p_{skin} = \frac{q\mu B}{2\pi kh} \cdot S, s - skin factor,
$$

\n
$$
B - formation volume factor
$$

Radial flow through stack of layered parallel layers:

Fluid viscosity

Definition: Fore required to move upper moving plane can be expressed by: $F=\frac{\mu Av_x}{\mu}$ $\frac{Av_x}{y} \rightarrow \frac{F}{A}$ $\frac{F}{A}$ or $\tau = \mu \frac{dv_x}{dy}$ $\frac{dv_x}{dy}$, $\mu = \frac{\tau}{\frac{dv}{dx}}$ $\frac{dv_{x}}{dy}$ Shear stress: $\tau = \frac{F}{4}$ $\frac{F}{A} \left[N \cdot \frac{s}{m} \right]$ $\left[\frac{s}{m^2}\right]$ Shear rate: $\frac{dv_x}{dy} = \frac{m}{s \cdot m}$ $\frac{m}{s \cdot m} = \frac{1}{m}$ m $\mu \rightarrow$ | $N \cdot s$ $m²$ $\vert \rightarrow [Pa \cdot s]$ 1Pa.s = 10 P (poise) = 10³ cP (centipoise)

Viscous flow rate: Poiseuille's equation:

$$
v_x = \frac{r^2}{8\mu} \frac{\Delta p}{l} \rightarrow q = A \frac{r^2}{8\mu} \frac{\Delta p}{l}, \ k = \frac{\phi r^2}{8}
$$

Compressibility:

$$
c=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_T,
$$

 $\left(\frac{\partial V}{\partial p}\right)_T$ − change in volume of material related to a unit change in pressure (isthermal process) **DIUGUCHUIL**

Basic terminology

- Production of oil, gas and formation water is related to volume expansion when the reservoir pressure decreases due to removal of reservoir fluids
- Various compressibility in relation to petroleum production:
	- \triangleright Rock matrix compressibility, c_r
	- \triangleright Rock bulk compressibility, c_h
	- \triangleright Pore compressibility, c_n
	- \triangleright Liquid compressibility (oil or initial water), c_0 and c_w
	- \triangleright Gas compressibility, c_a
	- \triangleright Fluid compressibility, c_f

C

$$
c_{total} = c_p + c_f = \frac{c_b - (1 + \phi)c_r}{\phi} + (c_w S_w + c_o S_o + c_g S_g)
$$

Compressibility of ideal gas:

$$
pV = nRT, \ c_g = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T = \frac{1}{p}
$$

For real gases:

$$
pV = ZnRT, \ c_g = \frac{1}{p} - \frac{1}{z}\frac{dz}{dp}
$$

Gas permeability:

$$
k = \frac{q_0 \mu}{A} \frac{p_0}{\bar{p}} \frac{\Delta l}{\Delta p}
$$

Capillary number & Relative permeability

$$
\Delta p_{viscous} = \Delta p_{oil} + \Delta p_{water} = \frac{q}{Ak} \left(\mu_w x + \mu_o (L - x) \right), \Delta p_{capillary} = \frac{2 \{ sigma_{ow} \cos \theta\}}{r_c}
$$

$$
\frac{\Delta p_{viscous}}{\Delta p_{capillary}} = 4 \left[\frac{v \mu_o}{\sigma_{ow} \cos \theta} \frac{x}{r_c} + \frac{v \mu_w}{\sigma_{ow} \cos \theta} \frac{L - x}{r_c} \right], \text{v-fluid velocity in pores, } k = \frac{r^2}{8}
$$

The only dynamical term in the equation above: $\frac{v\mu}{\sigma\cos\theta}=N_c$ - capillary number. An increase in the capillary number implies increase in oil recovery.

Relative permeability:

$$
k_{rj} = \frac{k_{ej}}{base\ permeability}
$$

Pressure, Volume & Temperature

Intro:

 $P_{sc} = 1 bar (14.7 \text{ psi})$ $T_{sc} = 15^{0}C (60^{0}F)$, Sub index: res (reservoir conditions), SC (standard condition, atmospheric conditions) Flooding rate: $Q = \frac{\Delta V}{\Delta t}$ $\frac{\Delta V}{\Delta t}$, Mole fractions: $z_i = \frac{n_i}{\Sigma n}$ $\frac{n_i}{\sum n_j} = \frac{number\ of\ moles\ of\ component\ i}{total\ number\ of\ moles}$ total numer of moles Weight fractions: $w_i = \frac{w_i}{\nabla w_i}$ $\frac{w_i}{\sum w_i} = \frac{weight\ of\ component\ i}{total\ weight}$ total weight Gibbs phase rule: F=C+2-P, F- number of degrees of freedom, C- number of components, Pnumber of phases in equilibrium.

Ex. H20: C=1, P=1 (liquid) P=2 (slush) P=3 (triple point) Critical point:

The critical temperature/pressure are the maximum P and T at which a pure compound can form coexisting phases.

Classification of Reservoir fluid, reservoir temperature, GOR and oil gravity

- A reservoir contains gas if $T_{res} > T_c$
- A reservoir contains oil if $T_{res} < T_c$
- Retrograde condensation of heavier oil components in reservoir when

$$
T_c < T_{res} < T_{kri}
$$

- No liquid forms if
$$
P_{res} > P_{kri}
$$

GOR:

The number of cubic feet of the associated gas produced at SC per barrel of Stock tank oil in field units. $\frac{SCF}{SBL}$ Sm_{gas}^3 $\overline{\it Sm}_{oil}^3$

Stock tank oil gravity:

$$
API = \frac{141.5}{S_o} - 131.5 = \frac{141.5}{\gamma_0} - 131.5
$$

Gas specific gravity (γ_a) :

$$
\gamma_g = \frac{MW_m}{MW_{air}}
$$

Gas density:

$$
\rho_g = \frac{m}{v} = \frac{PMW_m}{ZRT}, \qquad m = n * Mw, \qquad MW_m - mean molecular weight
$$

Gas formation volume factor:

 $B_g = \frac{V_{res}}{V}$ $\frac{r e s}{V_{sc}} =$ z_{res}nRT_{res} $Pres$ $Z_{\mathcal{S}\mathcal{C}} n R T_{\mathcal{S}\mathcal{C}}$ P_{SC} , for the same mass, nR cancel out, and $z_{sc}{\sim}1$, T_{sc} & P_{sc} are constants:

$$
B_g = 0.0283 \frac{z_{res} T_{res}}{P_{res}} ft^3 / SCF
$$

Material balance:

What is the volume of produced gas, G_p , at SC, given initial reservoir pressure P_{ic} and current reservoir pressure P_{res}

Assumptions: enclosed reservoir, constant reservoir volume, HCPV=constant, $HCPV = V_b \cdot \phi(1 - S_{wi})$

- T= constant under depressurization

$$
PV = ZnRT \rightarrow n = \frac{PV}{ZRT}
$$

Mass balance: $P_{ic} \rightarrow P_{res}$ $n_{prod,SC} = n_{ic} - n_{res}, G_p = n_{prod} V_m$ (PV $\left(\frac{1}{ZRT}\right)_{sc}$ = (PV $\left(\frac{1}{ZRT}\right)_{ic}$ − (PV $\left(\frac{1}{ZRT}\right)_{res}$ $P_{sc}V_{sc}$ $Z_{sc}RT_{sc}$ $=\frac{P_{ic}V_{ic}}{Z_{DT}}$ $Z_{ic}RT_{ic}$ $-\frac{P_{res}V_{res}}{7-\rho T}$ $Z_{res}RT_{res}$

$$
-V_{sc}=G_p
$$

- $V_{ic} = V_{res}$ enclosed reservoir
- $T_{ic} = T_{res}$ constant T
- $\frac{1}{2s}$ = 1 all gases act ideally at SC

Solve with respect to $\frac{P_{res}}{z_{res}} = \frac{P_{ic}}{z_{ic}}$ $\frac{P_{ic}}{z_{ic}} - \frac{P_{sc}T_{ic}}{V_{ic}T_{sc}}$ $\frac{r_{\mathcal{S}\mathcal{C}}r_{\mathcal{IC}}r_{\mathcal{G}}}{v_{ic}r_{\mathcal{S}\mathcal{C}}}G_p$ and plot against GP

 $IGIP = n_i \cdot V_m$ Pres Initial Gas in Place= Initial amount of moles * Molar volume

GIP-initial gas

Wet gas: Wet gas: Wet gas PT diagram:

- constant T, depressurization.

Under production to SC both P and T decreases and the reservoir fluid and moves into Two-phase-envelope. Material balance calculations identical to dry gas, but only after produced STO and water is converted to gas equivalents.

How to calculate oil' gas equivalent volume

- Starting point in 1 SBL STO How many gas equivalents (GE) in SCF Use Real gas law

 $GE_{STO} = V_{sc} =$ z_{sc} n RT_{sc} P_{sc} $=n \cdot \frac{Z_{sc}RT_{sc}}{R}$ P_{sc} $= n \cdot$ $10.732(60 + 460)^{0}R$ 14.7

Number of moles in 1bbl STO If γ_{STO} or M_{STO} are given, then $n_{STO} = \frac{m_{STO}}{M_{STO}}$ <u>тсто</u>
M_{STO}'

$$
\gamma_{STO} = \frac{\rho_o}{\rho_w} \rightarrow \rho_o = \gamma_{STO} \cdot \rho_w, \ \ m_o = \rho_0 V_o
$$

$$
n_{STO} = \frac{m_{STO}}{M_{STO}} = \frac{\rho_{STO}V_{STO}}{M_{STO}} = \frac{\gamma_{STO}\rho_{w}V_{STO}}{M_{STO}} = \frac{\gamma_{STO}V_{STO}}{M_{STO}} = \frac{\gamma_{STO}V_{STO}}{M_{STO}} = \frac{\gamma_{STO}V_{STO}}{M_{STO}} = \frac{10}{M_{STO}} \frac{10}{(lb)} = 0.5.615 \frac{ft^3}{bbl}
$$

$$
= 350.54 \frac{\gamma_{STO}}{M_{STO}} \text{ lb mol}
$$
\n
$$
GE_{STO} = V_{SC} = \frac{\gamma_{STO}}{M_{STO}} \cdot 350.52 \cdot \frac{10.732 \cdot 520}{14.7} \approx 133000 \frac{\gamma_{STO}}{M_{STO}} \left[\frac{SCF}{SBL} \right] \text{ or } \frac{133000 \gamma_{STO}}{5.615 \gamma_{STO}} \left[\frac{Sm^3}{Sm^3} \right]
$$

Produced oil Gas equivalent volume

total
$$
GE_{STO}[SCF] = GE_{STO}\left[\frac{SCF}{SBL}\right] \cdot V_{STO}[SBL]
$$

If γ_{STO} is given, not M_{STO} , we can use Cragoe's formula to determine M_{STO}

$$
M_{STO} = \frac{6084}{^{\circ}API - 5.9} \rightarrow {^{\circ}API} = \frac{141}{\gamma_o} - 131.5, \gamma_o = \frac{\rho_o}{\rho_w}
$$

If water is produced from the reservoir, we can find water gas equivalent volume:

$$
\gamma_w = 1 \quad M_w = 18 \to GE_w = 133000 \frac{\gamma_w}{M_w} \approx 133000 \cdot \frac{1}{18} = 7389 \, SCF/SBL
$$

Material balance for a wet gas:

Volume of reservoir fluid produced / Total well fluid as a gas produced

$$
G_{p,tot\;(SC)}=V_{g,SC}+V_{STO}\cdot GE_{STO}+V_w\cdot GE_W,\;B_g=\frac{V_{res}}{V_{sc}}\rightarrow V_{res}=G_{p,tot}\cdot B_g
$$

To determine initial well fluid as gas, $G_i(SC)$: Plot $\frac{P_{res}}{z_{res}}$ against $G_{p,tot}$

$$
G_i = IGIP + IOIP \cdot GE_{STO}
$$

To calculate Production of oil and gas:

$$
1. \ \ n_{prod} = n_{ic} - n_{res}, \, PV = ZnRT
$$

2. $V_{g,SC} = n_{prod} \cdot V \cdot V_{m}$, $V_{STO} = \frac{n_{prod} M_{STO}}{2 \pi r}$ ρ_{STO} mole fraction of L(liquid) and V(gas) from n_{prod} $GOR = \frac{V_{g,SC}}{V}$ $\frac{V_{g,SC}}{V_{STO}}$, $\rho = \frac{m}{V}$ $\frac{m}{V}$, $V = \frac{m}{\rho}$ $\frac{m}{\rho} = \frac{nM}{\rho}$ ρ IGIP and IOIP volume at SC: Amount of initial reservoir fluid: n_i $IGIP = n_i \cdot V \cdot V_m$ $IOIP = \frac{n_i \cdot L \cdot M_{STO}}{R}$ ρ_{STO} $GOR_{initial} =$ IGIP *IOIP*

$$
\begin{array}{c}\n\text{Res}_{\text{2HSS}} \\
\text{Res}_{\text{2HSS}} \\
\text{Res}_{\text{2HSS
$$

Gas condensate: lecture 5 050220 and lecture 6

Reservoir Condition phase behavior (Equilibrium calculations)

 $K_i = \frac{y_i}{r_i}$ $\frac{y_l}{x_i}$, K_i - physical equilibrium constant giving ratio of component in gas and liquid phase

 y_i - concentration of component in the vapor phase

 x_i - concentration of component in the liquid phase

Defined by:

- Dalton's law for ideal gases:

$$
P = P_1 + P_2 + \dots + P_N = \sum P_i
$$

\n
$$
P_i = \frac{n_i RT}{V}, \qquad i = 1, 2, \dots, N
$$

\n
$$
\frac{PV}{RT} = n, \quad \sum n_i = \frac{(\sum P_i)V}{RT}
$$

\n
$$
y_i = \frac{n_i}{n} = \frac{P_i}{P}
$$

\n
$$
P_i = y_i P
$$

- Raoult's law for ideal liquids:

$$
x_i = \frac{P_i}{P_i * (T)}, \quad P_i = x_i P_i * (T)
$$

- System equilibrium at P and T

$$
P_i(vapor) = P_i(liquid), y_i P = x_i P_i * (T), K_i = \frac{y_i}{x_i} = \frac{P_i(T)}{P}
$$

Flash calculations in lecture 7

Separator calculations:

We have j number of separators, mole fraction liquid enters separator "j"

$$
(n_o)_j = 1 \text{mole} \cdot L_1 \cdot L_2 \cdot L_3 \cdot \dots \cdot L_j = \prod_{i=1}^j L_i
$$

If Separator "k" is stock tank; mole fraction fluid that reaches the tank:

$$
n_{STO} = \prod_{i=1}^{k} L_i
$$

For gas: moles of gas from separator 1 to k, mole fraction:

$$
(n_g)_k = 1 \text{ mole} \cdot V_1 + L_1 V_2 + L_1 L_2 V_3 + \dots + L_1 \cdot L_2 \cdot L_{k-1} \cdot V_k, \qquad L_0 = 1
$$

$$
n_g = \sum_{i=1}^k V_i \cdot \prod_{j=0}^{i-1} L_j
$$

Given that sum of mole should equal 1 mole initial reservoir fluid:

$$
n_g = 1 - n_{STO} = 1 - \prod_{i=1}^{k} L_i
$$

Volume of gas Separator at SC and STO

 V_q = number of moles in gas · molar volume at SC (1 mole gas)

$$
V_g = n_g \cdot V_m = (1 - n_{STO})V_m = \left(1 - \prod_{i=1}^k L_i\right) V_m
$$

$$
V_{STO} = \frac{m_{STO}}{\rho_{STO}} = \frac{n_{STO} M_{STO}}{\rho_{STO}} = \frac{M_{STO} \prod_{i=1}^k L_i}{\rho_{STO}}
$$

Total GOR:

$$
GOR_{total} = \frac{V_g}{V_{STO}} = \frac{n_g V_m \rho_{STO}}{n_{STO} M_{STO}} = \frac{(1 - \prod_{i=1}^{k} L_i) V_m \rho_{STO}}{\prod_{i=1}^{k} L_i \cdot M_{STO}}
$$

GOR for separator i:

$$
GOR_i = \frac{(V_g)}{V_{STO}} = \frac{(n_g)_i \cdot V_m \cdot \rho_{STO}}{n_{STO} \cdot M_{STO}} = \frac{V_i \prod_{i=1}^{i-1} L_i \cdot V_m \cdot \rho_{STO}}{\prod_{i=1}^{k} L_i \cdot M_{STO}}
$$

Formation Volume factor for oil B_o

- Defined as the relation between reservoir volume of oil and STO SC

$$
B_o = \frac{V_o}{V_{STO}}
$$

$$
B_o = \frac{V_o}{V_{STO}} = \frac{n_o M_o}{\frac{n_{STO} M_{STO}}{\rho_{STO}}} = \frac{M_o \rho_{STO}}{\prod_{i=1}^{k} L_i \cdot M_{STO} \cdot \rho_o}
$$

Flash calculation in lecture 8

Well Testing:

Multiphase flow: